CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2021, Vol. 39 ›› Issue (1): 112-119.doi: 10.12140/j.issn.1000-7423.2021.01.017
• REVIEWS • Previous Articles Next Articles
LIU Bing(), WANG Qi, HE Yong-jun, HE Ping*(
)
Received:
2020-08-03
Revised:
2020-11-28
Online:
2021-02-28
Published:
2021-03-10
Contact:
HE Ping
E-mail:imsunnylb@163.com;hepingyixue@126.com
Supported by:
CLC Number:
LIU Bing, WANG Qi, HE Yong-jun, HE Ping. Research progress on immune regulation of medical protozoa-related proteins[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(1): 112-119.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2021.01.017
[1] | Shen J. Lecture 8 Immune evasion of parasite[J]. Chin J Vet Parasitol, 2004,12(4):57-58. (in Chinese) |
( 沈杰. 第八讲寄生虫的免疫逃避[J]. 中国兽医寄生虫病, 2004,12(4):57-58.) | |
[2] | Tong QB, Liu SX, Cao JP. Advances in research of molecules related to the immune evasion of schistosomes[J]. Chin J Parasitol Parasit Dis, 2004,22(1):57-60. (in Chinese) |
( 童群波, 刘述先, 曹建平. 血吸虫免疫逃避相关分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2004,22(1):57-60.) | |
[3] |
Ahmed AK, Mun HS, Aosai FM, et al. Roles of Toxoplasma gondii-derived heat shock protein 70 in host defense against T. gondii infection[J]. Microbiol Immunol, 2004,48(11):911-915.
doi: 10.1111/j.1348-0421.2004.tb03611.x pmid: 15557751 |
[4] | Feng XM, Wang YH, Ju XH. Research progress on the mechanisms of antigenic variation in Giardia lamblia[J]. Chin J Parasitol Parasit Dis, 2012,30(4):317-320. (in Chinese) |
( 冯宪敏, 王月华, 鞠晓红. 蓝氏贾第鞭毛虫表面抗原变异机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012,30(4):317-320.) | |
[5] | Huang HB, Yang WT, Wang CF, et al. Progresses on antitumor immune mechanisms of protozoon[J]. Chin J Parasitol Parasit Dis, 2015,33(1):64-67. (in Chinese) |
( 黄海斌, 杨文涛, 王春凤, 等. 原虫抗肿瘤免疫机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(1):64-67.) | |
[6] | Chen QJ, Yin JG. Research and perspectives in parasitology[J]. Chin J Parasitol Parasit Dis, 2007,25(4):342-348. (in Chinese) |
( 陈启军, 尹继刚. 寄生虫学主要研究进展及发展方向[J]. 中国寄生虫学与寄生虫病杂志, 2007,25(4):342-348.) | |
[7] | Liu SX, Cao JP. Research progress and prospects for vaccines against parasitic diseases[J]. Chin J Parasitol Parasit Dis, 2005,23(z1):362-368, 373. (in Chinese) |
( 刘述先, 曹建平. 寄生虫病疫苗研究的现状及展望[J]. 中国寄生虫学与寄生虫病杂志, 2005,23(z1):362-368, 373. | |
[8] |
Semblat JP, Ghumra A, Czajkowsky DM, et al. Identification of the minimal binding region of a Plasmodium falciparum IgM binding PfEMP1 domain[J]. Mol Biochem Parasitol, 2015,201(1):76-82.
doi: 10.1016/j.molbiopara.2015.06.001 pmid: 26094597 |
[9] |
Kraemer SM, Smith JD. A family affair: var genes, PfEMP1 binding, and malaria disease[J]. Curr Opin Microbiol, 2006,9(4):374-380.
doi: 10.1016/j.mib.2006.06.006 |
[10] |
Smith JD, Chitnis CE, Craig AG, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes[J]. Cell, 1995,82(1):101-110.
doi: 10.1016/0092-8674(95)90056-x pmid: 7606775 |
[11] |
Hviid L, Jensen AT. PfEMP1-A parasite protein family of key importance in Plasmodium falciparum malaria immunity and pathogenesis[J]. Adv Parasitol, 2015,88:51-84.
doi: 10.1016/bs.apar.2015.02.004 pmid: 25911365 |
[12] |
Higgins MK, Carrington M. Sequence variation and structural conservation allows development of novel function and immune evasion in parasite surface protein families[J]. Protein Sci, 2014,23(4):354-365.
doi: 10.1002/pro.2428 |
[13] |
Chan JA, Drew DR, Reiling L, et al. Low levels of human antibodies to gametocyte-infected erythrocytes contrasts the PfEMP1-dominant response to asexual stages in P. falciparum malaria[J]. Front Immunol, 2018,9:3126.
doi: 10.3389/fimmu.2018.03126 pmid: 30692996 |
[14] |
Dolan SA, Miller LH, Wellems TE. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum[J]. J Clin Invest, 1990,86(2):618-624.
doi: 10.1172/JCI114753 pmid: 2200806 |
[15] |
Persson KE, McCallum FJ, Reiling L, et al. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies[J]. J Clin Invest, 2008,118(1):342-351.
doi: 10.1172/JCI32138 pmid: 18064303 |
[16] |
Stubbs J, Simpson KM, Triglia T, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes[J]. Science, 2005,309(5739):1384-1387.
doi: 10.1126/science.1115257 pmid: 16123303 |
[17] |
Tham WH, Wilson DW, Reiling L, et al. Antibodies to reticulocyte binding protein-like homologue 4 inhibit invasion of Plasmodium falciparum into human erythrocytes[J]. Infect Immun, 2009,77(6):2427-2435.
doi: 10.1128/IAI.00048-09 pmid: 19307208 |
[18] |
Duraisingh MT, Triglia T, Ralph SA, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes[J]. Embo J, 2003,22(5):1047-1057.
doi: 10.1093/emboj/cdg096 pmid: 12606570 |
[19] |
Ikarashi M, Nakashima H, Kinoshita M, et al. Distinct development and functions of resident and recruited liver Kupffer cells/macrophages[J]. J Leukoc Biol, 2013,94(6):1325-1336.
doi: 10.1189/jlb.0313144 pmid: 23964119 |
[20] |
Casares S, Richie TL. Immune evasion by malaria parasites: a challenge for vaccine development[J]. Curr Opin Immunol, 2009,21(3):321-330.
doi: 10.1016/j.coi.2009.05.015 |
[21] |
Gomes PS, Bhardwaj J, Rivera-Correa J, et al. Immune escape strategies of malaria parasites[J]. Front Microbiol, 2016,7:1617.
doi: 10.3389/fmicb.2016.01617 pmid: 27799922 |
[22] |
Rénia L, Goh YS. Malaria parasites: the great escape[J]. Front Immunol, 2016,7:463.
doi: 10.3389/fimmu.2016.00463 pmid: 27872623 |
[23] |
Holder AA. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria[J]. Parasitology, 2009,136(12):1445-1456.
doi: 10.1017/S0031182009990515 pmid: 19627632 |
[24] |
Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum[J]. Nature, 2002,419(6906):498-511.
doi: 10.1038/nature01097 pmid: 12368864 |
[25] |
Saito F, Hirayasu K, Satoh T, et al. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors[J]. Nature, 2017,552(7683):101-105.
doi: 10.1038/nature24994 pmid: 29186116 |
[26] |
Petter M, Haeggström M, Khattab A, et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns[J]. Mol Biochem Parasitol, 2007,156(1):51-61.
doi: 10.1016/j.molbiopara.2007.07.011 pmid: 17719658 |
[27] |
Goel S, Palmkvist M, Moll K, et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria[J]. Nat Med, 2015,21(4):314-317.
doi: 10.1038/nm.3812 pmid: 25751816 |
[28] |
Deans AM, Rowe JA. Plasmodium falciparum: rosettes do not protect merozoites from invasion-inhibitory antibodies[J]. Exp Parasitol, 2006,112(4):269-273.
doi: 10.1016/j.exppara.2005.11.007 pmid: 16364300 |
[29] |
Yam XY, Niang M, Madnani KG, et al. Three is a crowd - new insights into rosetting in Plasmodium falciparum[J]. Trends Parasitol, 2017,33(4):309-320.
doi: 10.1016/j.pt.2016.12.012 pmid: 28109696 |
[30] |
Gomes PS, Bhardwaj J, Rivera-Correa J, et al. Immune escape strategies of malaria parasites[J]. Front Microbiol, 2016,7:1617.
doi: 10.3389/fmicb.2016.01617 pmid: 27799922 |
[31] |
Singh H, Madnani K, Lim YB, et al. Expression dynamics and physiologically relevant functional study of STEVOR in asexual stages of Plasmodium falciparum infection[J]. Cell Microbiol, 2017,19(6):e12715.
doi: 10.1111/cmi.v19.6 |
[32] | Yin LT, Cao L, Meng XL, et al. Bioinformatics analysis of the structure and function of the gene encoding heat shock protein 70 from Toxoplasma gondii[J]. J Pathog Biol, 2011,6(7):513-516. (in Chinese) |
( 殷丽天, 曹蕾, 孟晓丽, 等. 刚地弓形虫热休克70基因编码蛋白结构与功能的生物信息学分析[J]. 中国病原生物学杂志, 2011,6(7):513-516.) | |
[33] |
Czarnewski P, Araújo ECB, Oliveira MC, et al. Recombinant TgHSP70 immunization protects against Toxoplasma gondii brain cyst formation by enhancing inducible nitric oxide expression[J]. Front Cell Infect Microbiol, 2017,7:142.
doi: 10.3389/fcimb.2017.00142 pmid: 28487847 |
[34] |
Makino M, Uemura N, Moroda M, et al. Innate immunity in DNA vaccine with Toxoplasma gondii-heat shock protein 70 gene that induces DC activation and Th1 polarization[J]. Vaccine, 2011,29(10):1899-1905.
doi: 10.1016/j.vaccine.2010.12.118 |
[35] |
Dautu G, Munyaka B, Carmen G, et al. Toxoplasma gondii: DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential[J]. Exp Parasitol, 2007,116(3):273-282.
doi: 10.1016/j.exppara.2007.01.017 pmid: 17379212 |
[36] |
Mun HS, Aosai FM, Yano A. Role of Toxoplasma gondii HSP70 and Toxoplasma gondii HSP30/bag1 in antibody formation and prophylactic immunity in mice experimentally infected with Toxoplasma gondii[J]. Microbiol Immunol, 1999,43(5):471-479.
doi: 10.1111/j.1348-0421.1999.tb02430.x pmid: 10449253 |
[37] |
Gedik Y, Gülçe Īz S, Can H, et al. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model[J]. Trials Vaccinol, 2016,5:15-23.
doi: 10.1016/j.trivac.2015.11.002 |
[38] |
Soldati D, Dubremetz JF, Lebrun M. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii[J]. Int J Parasitol, 2001,31(12):1293-1302.
doi: 10.1016/s0020-7519(01)00257-0 pmid: 11566297 |
[39] |
Ismael AB, Sekkai D, Collin C, et al. The MIC3 gene of Toxoplasma gondii is a novel potent vaccine candidate against toxoplasmosis[J]. Infect Immun, 2003,71(11):6222-6228.
doi: 10.1128/iai.71.11.6222-6228.2003 pmid: 14573640 |
[40] |
Zhang D, Jiang N, Chen Q. Vaccination with recombinant adenoviruses expressing Toxoplasma gondii MIC3, ROP9, and SAG2 provide protective immunity against acute toxoplasmosis in mice[J]. Vaccine, 2019,37(8):1118-1125.
doi: 10.1016/j.vaccine.2018.12.044 pmid: 30670302 |
[41] |
Ismael AB, Dimier-Poisson I, Lebrun M, et al. Mic1-3 knockout of Toxoplasma gondii is a successful vaccine against chronic and congenital toxoplasmosis in mice[J]. J Infect Dis, 2006,194(8):1176-1183.
doi: 10.1086/507706 pmid: 16991094 |
[42] |
Yang DY, Liu J, Hao P, et al. MIC3, a novel cross-protective antigen expressed in Toxoplasma gondii and Neospora caninum[J]. Parasitol Res, 2015,114(10):3791-3799.
doi: 10.1007/s00436-015-4609-6 pmid: 26141436 |
[43] |
Gong P, Cao L, Guo Y, et al. Toxoplasma gondii: protective immunity induced by a DNA vaccine expressing GRA1 and MIC3 against toxoplasmosis in BALB/c mice[J]. Exp Parasitol, 2016,166:131-136.
doi: 10.1016/j.exppara.2016.04.003 pmid: 27059254 |
[44] |
Denkers EY, Bzik DJ, Fox BA, et al. An inside job: hacking into Janus kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan Toxoplasma gondii[J]. Infect Immun, 2012,80(2):476-482.
doi: 10.1128/IAI.05974-11 |
[45] |
Ong YC, Reese ML, Boothroyd JC. Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6[J]. J Biol Chem, 2010,285(37):28731-28740.
doi: 10.1074/jbc.M110.112359 pmid: 20624917 |
[46] |
Butcher BA, Fox BA, Rommereim LM, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control[J]. PLoS Pathog, 2011,7(9):e1002236.
doi: 10.1371/journal.ppat.1002236 pmid: 21931552 |
[47] |
Jensen KDC, Hu K, Whitmarsh RJ, et al. Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15[J]. Infect Immun, 2013,81(6):2156-2167.
doi: 10.1128/IAI.01185-12 |
[48] |
Dunay IR, DaMatta RA, Fux B, et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii[J]. Immunity, 2008,29(2):306-317.
doi: 10.1016/j.immuni.2008.05.019 |
[49] |
Baird JR, Fox BA, Sanders KL, et al. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment[J]. Cancer Res, 2013,73(13):3842-3851.
doi: 10.1158/0008-5472.CAN-12-1974 pmid: 23704211 |
[50] |
Fox BA, Sanders KL, Rommereim LM, et al. Secretion of rhoptry and dense granule effector proteins by nonreplicating Toxoplasma gondii uracil auxotrophs controls the development of antitumor immunity[J]. PLoS Genet, 2016,12(7):e1006189.
doi: 10.1371/journal.pgen.1006189 pmid: 27447180 |
[51] |
Du J, An R, Chen L, et al. Toxoplasma gondii virulence factor ROP18 inhibits the host NF-κB pathway by promoting p65 degradation[J]. J Biol Chem, 2014,289(18):12578-12592.
doi: 10.1074/jbc.M113.544718 pmid: 24648522 |
[52] |
Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence[J]. Cell Host Microbe, 2010,8(6):484-495.
doi: 10.1016/j.chom.2010.11.005 |
[53] |
Yamamoto M, Ma JS, Mueller C, et al. ATF6beta is a host cellular target of the Toxoplasma gondii virulence factor ROP18[J]. J Exp Med, 2011,208(7):1533-1546.
doi: 10.1084/jem.20101660 |
[54] |
Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors[J]. Nat Rev Microbiol, 2012,10(11):766-778.
doi: 10.1038/nrmicro2858 |
[55] |
McLeod R, Estes RG, Mack DG, et al. Immune response of mice to ingested Toxoplasma gondii: a model of Toxoplasma infection acquired by ingestion[J]. J Infect Dis, 1984,149(2):234-244.
doi: 10.1093/infdis/149.2.234 pmid: 6699433 |
[56] |
Luft B-J, Remington J-S. Toxoplasmic encephalitis in AIDS[J]. Clin Infect Dis, 1992,15(2):211-222.
doi: 10.1093/clinids/15.2.211 pmid: 1520757 |
[57] |
Radke JR, Guerini MN, Jerome M, et al. A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii[J]. Mol Biochem Parasitol, 2003,131(2):119-127.
doi: 10.1016/s0166-6851(03)00198-1 pmid: 14511810 |
[58] |
Jung C, Lee CY, Grigg ME. The SRS superfamily of Toxoplasma surface proteins[J]. Int J Parasitol, 2004,34(3):285-296.
doi: 10.1016/j.ijpara.2003.12.004 |
[59] | Jing BQ, Xie YE, HU WM, et al. Immunogenecity of recombinant Leishmania donovani peroxidoxin-1, tryparedoxin peroxidase, hypothetical protein CAJ07026.1 and GDP-mannose pyrophosphorylase in BALB/c mice[J]. Chin J Parasitol Parasit Dis, 2017,35(6):563-569. (in Chinese) |
( 敬保迁, 谢勇恩, 胡为民, 等. 重组杜氏利什曼原虫Pxn1、TryP、假定蛋白CAJ07026和GDPMP蛋白刺激BALB/c小鼠的免疫应答状态[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(6):563-569.) | |
[60] |
Bhattacharya P, Ghosh S, Ejazi SA, et al. Induction of IL-10 and TGFβ from CD4+CD25+FoxP3+T cells correlates with parasite load in Indian kala-azar patients infected with Leishmania donovani [J]. PLoS Negl Trop Dis, 2016,10(2):e0004422.
doi: 10.1371/journal.pntd.0004422 pmid: 26829554 |
[61] |
Bayih AG, Daifalla NS, Gedamu L. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant [J]. PLoS Negl Trop Dis, 2014,8(12):e3391.
doi: 10.1371/journal.pntd.0003391 pmid: 25500571 |
[62] |
Barr SD, Gedamu L. Role of peroxidoxins in Leishmania chagasi survival. Evidence of an enzymatic defense against nitrosative stress[J]. J Biol Chem, 2003,278(12):10816-10823.
doi: 10.1074/jbc.M212990200 pmid: 12529367 |
[63] |
Stober CB, Lange UG, Roberts MTM, et al. From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine Leishmania major infection[J]. Vaccine, 2006,24(14):2602-2616.
doi: 10.1016/j.vaccine.2005.12.012 pmid: 16406227 |
[64] | Li JF. Preliminary studies of DNA vaccine with amastin gene against Leishmania donovani[D]. Chengdu: Sichuan University, 2007. ( in Chinese) |
( 李金福. 杜氏利什曼原虫amastin基因DNA疫苗的初步研究[D]. 成都: 四川大学, 2007.) | |
[65] |
Carranza PG, Lujan HD. New insights regarding the biology of Giardia lamblia[J]. Microbes Infect, 2010,12(1):71-80.
doi: 10.1016/j.micinf.2009.09.008 |
[66] | Chen XX, Fu TX, Zhao CL, et al. Experimental study on the protective antigen of G. intestinalis[J]. Chin Trop Med, 2007,7(12):2177-2179. (in Chinese) |
( 陈锡欣, 傅婷霞, 赵长磊, 等. 蓝氏贾第鞭毛虫保护性抗原的实验研究[J]. 中国热带医学, 2007,7(12):2177-2179.) | |
[67] |
Rudenko G. African trypanosomes: the genome and adaptations for immune evasion[J]. Essays Biochem, 2011,51:47-62.
doi: 10.1042/BSE0510047 |
[68] |
Nash TE, Banks SM, Alling DW, et al. Frequency of variant antigens in Giardia lamblia[J]. Exp Parasitol, 1990,71(4):415-421.
doi: 10.1016/0014-4894(90)90067-m pmid: 1699782 |
[69] | Wang Y, Tian XF. Immune evasion mechanisms of Giardia lamblia[J]. Chin J Zoonoses, 2013,29(9):909-913. (in Chinese) |
( 王洋, 田喜凤. 蓝氏贾第鞭毛虫的免疫逃避机制[J]. 中国人兽共患病学报, 2013,29(9):909-913.)
doi: 10.3969/cjz.j.issn.1002-2694.2013.09.017 |
[1] | JIANG Wenjing, MENG Yali, ZHAO Lina, WANG Chunmiao, ZHANG Xiaolei. Immunoprotection of nuclei acid vaccine dual-targeting rhoptry protein 18 and surface antigen 30 of Toxoplasma gondii in mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 532-538. |
[2] | WANG Zhiqian, WANG Jingwen, SONG Xiumei. Function analysis of Anopheles stephensi peptidoglycan recognition protein S2 in regulating homeostasis of symbiotic microbiota [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 397-403. |
[3] | DING Hongyun, DONG Ying, XU Yanchun, DENG Yan, LIU Yan, WU Jing, CHEN Mengni, ZHANG Canglin. Polymorphism analysis of multidrug resistance protein 1 gene in imported Plasmodium vivax in Yunnan Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 404-411. |
[4] | CAO Deping, LI Jiajing, SONG Mengwei, MO Gang. Experimental observation on the changes of hepatic stellate cells stimulated in vitro with tissue protein of Echinococcus multilocularis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 440-445. |
[5] | LU Xing, WANG Shuiyi, CHEN Linjun, LIU Mingming, LIU Yutong, ZHU Huiru, JIANG Bingbing, DU Shaolei, BAYIN Chahan, LIU Dandan, ZHANG Wei. Cloning and prokaryotic expression of Theileria equi rhoptry neck protein 5 gene [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 497-501. |
[6] | LI Wenjie, FENG Meng, CHENG Xunjia. Research advances of the immune regulation of helminths and their derived molecules on mite-induced asthma [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 131-136. |
[7] | LI Chang, DU Xinyue, YAN Min, WANG Zhaojun. Research advances on the role and mechanism of neutrophil extracellular traps in parasitic infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 219-222. |
[8] | MA Hui, CHONG Shigui, CHEN Gen, ZHANG Linghui, QIN Junmei, ZHAO Yumin. Research progress on the cellular signal pathways associated in alveolar echinococcosis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 223-227. |
[9] | WANG Xiao-ling, ZHANG Wei, YI Cun, CHEN Xiang-yu, YANG Wen-bin, XU Bin, HU Wei. The effect of SjGPR89 protein on the growth and development of Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 701-707. |
[10] | CHEN Guo, ZHU Dan-dan, DUAN Yi-nong. Research progress of immune regulation protein B7 family on immune regulation during Schistosoma japonicum infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 774-779. |
[11] | NIE Ru, LI Wen-deng, YE Geng-bo, YIN Feng-jiao, PANG Ming-quan, WANG Zhi-xin, FAN Hai-ning. Research progress on the role of pyroptosis in human parasitic diseases [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 780-785. |
[12] | LI Jia-ming, WANG Yi-xuan, YANG Ning-ai, MA Hui-hui, LAN Min, LIU Chun-lan, ZHAO Zhi-jun. Effects of ROP16 protein of Toxoplasma gondii on polarization and apoptosis of MH-S cells and their related mechanisms [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 579-586. |
[13] | CAO Tian-xing, LIU Jun-long, ZHANG Zhi-gang, SHI Kang-yan, SHI Miao, GUAN Gui-quan, LI You-quan, YIN Hong, LUO Jian-xun. Prokaryotic expression of Theileria annulata recombinant TA04380 protein and establishment of ELISA [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 362-368. |
[14] | PAN Xiao-wen, WU Yin-juan, HE Qing, YIN Ying-xuan, LI Xue-rong. Research advances on exosome and its functions to parasitic helminths [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 390-395. |
[15] | SHI Tian-qi, CHEN Jun-hu. Research progress on reticulocyte binding proteins associated with Plasmodium vivax invasion of reticulocytes [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 396-401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||