CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2021, Vol. 39 ›› Issue (5): 703-709.doi: 10.12140/j.issn.1000-7423.2021.05.020
• REVIEWS • Previous Articles Next Articles
HU Yue1(), LV Zhi-yue1,2,3,*(
)
Received:
2021-03-28
Revised:
2021-04-25
Online:
2021-10-30
Published:
2021-11-10
Contact:
LV Zhi-yue
E-mail:huyue43@mail2.sysu.edu.cn;lvzhiyue@mail.sysu.edu.cn
Supported by:
CLC Number:
HU Yue, LV Zhi-yue. Application of metabolomics in research of medical helminths[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 703-709.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2021.05.020
[1] |
Bethony J, Brooker S, Albonico M, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm[J]. Lancet, 2006, 367(9521):1521-1532.
doi: 10.1016/S0140-6736(06)68653-4 |
[2] |
Keiser J, Utzinger J. Emerging foodborne trematodiasis[J]. Emerg Infect Dis, 2005, 11(10):1507-1514.
doi: 10.3201/eid1110.050614 |
[3] |
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189.
pmid: 10598751 |
[4] |
Fiehn O, Kopka J, Dörmann P, et al. Metabolite profiling for plant functional genomics[J]. Nat Biotechnol, 2000, 18(11):1157-1161.
pmid: 11062433 |
[5] | Taylor J, King RD, Altmann T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics, 2002, 18(Suppl 2):S241-S248. |
[6] | Qian G, Wang YL. Serum metabolomics of early postoperative cognitive dysfunction in elderly patients using liquid chromatography and Q-TOF mass spectrometry[J]. Oxid Med Cell Longev, 2020, 2020:8957541. |
[7] |
Prosser GA, de Carvalho LP. Metabolomics reveal d-alanine: D-alanine ligase as the target of d-cycloserine in Mycobacterium tuberculosis[J]. ACS Med Chem Lett, 2013, 4(12):1233-1237.
pmid: 24478820 |
[8] |
Ganguly S, Mitra T, Mahanty A, et al. A comparative metabolomics study on anadromous clupeid Tenualosa ilisha for better understanding the influence of habitat on nutritional composition[J]. Metabolomics, 2020, 16(3):30.
doi: 10.1007/s11306-020-01655-5 |
[9] | Yang CX, Zhao WN, Wang YN, et al. Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi[J]. Microorganisms, 2020, 8(3):E327. |
[10] |
Kokova D, Mayboroda OA. Twenty years on: metabolomics in helminth research[J]. Trends Parasitol, 2019, 35(4):282-288.
doi: S1471-4922(19)30027-3 pmid: 30824203 |
[11] |
O′Sullivan WJ, Edwards MR, Norton RS. The application of nuclear magnetic resonance spectroscopy to parasite metabolism[J]. Parasitol Today, 1989, 5(3):79-82.
doi: 10.1016/0169-4758(89)90007-0 |
[12] |
Kamleh MA, Dow JA, Watson DG. Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems[J]. Brief Funct Genomic Proteomic, 2009, 8(1):28-48.
doi: 10.1093/bfgp/eln052 |
[13] |
Na J, Khan A, Kim JK, et al. Discovery of metabolic alterations in the serum of patients infected with Plasmodium spp. by high-resolution metabolomics[J]. Metabolomics, 2019, 16(1):9.
doi: 10.1007/s11306-019-1630-2 |
[14] |
Hargrave KE, Woods S, Millington O, et al. Multi-omics studies demonstrate Toxoplasma gondii-induced metabolic reprogramming of murine dendritic cells[J]. Front Cell Infect Microbiol, 2019, 9:309.
doi: 10.3389/fcimb.2019.00309 |
[15] | Johnston K, Kim DH, Kerkhoven EJ, et al. Mapping the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U- 13C-labelled substrates and LC-MS[J]. Biosci Rep, 2019, 39(5): BSR20181601. |
[16] | Arjmand M, Madrakian A, Khalili G, et al. Metabolomics-based study of logarithmic and stationary phases of promastigotes in Leishmania major by 1H NMR spectroscopy[J]. Iran Biomed J, 2016, 20(2):77-83. |
[17] |
Massa DR, Chejlava MJ, Fried B, et al. High performance column liquid chromatographic analysis of selected carboxylic acids in Biomphalaria glabrata patently infected with Schistosoma mansoni[J]. Parasitol Res, 2007, 101(4):925-928.
doi: 10.1007/s00436-007-0563-2 |
[18] |
Abou Elseoud SM, Abdel Fattah NS, Ezz El Din HM, et al. Potential correlation between carboxylic acid metabolites in Biomphalaria alexandrina snails after exposure to Schistosoma mansoni infection[J]. Korean J Parasitol, 2012, 50(2):119-126.
doi: 10.3347/kjp.2012.50.2.119 pmid: 22711922 |
[19] |
Tunholi-Alves VM, Tunholi VM, Garcia J, et al. Unveiling the oxidative metabolism of Achatina fulica (Mollusca ∶ Gastropoda) experimentally infected to Angiostrongylus cantonensis (Nematoda ∶ Metastrongylidae)[J]. Parasitol Res, 2018, 117(6):1773-1781.
doi: 10.1007/s00436-018-5859-x pmid: 29680939 |
[20] |
Wang YL, Holmes E, Nicholson JK, et al. Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification[J]. Proc Natl Acad Sci USA, 2004, 101(34):12676-12681.
doi: 10.1073/pnas.0404878101 |
[21] |
Li JV, Holmes E, Saric J, et al. Metabolic profiling of a Schistosoma mansoni infection in mouse tissues using magic angle spinning-nuclear magnetic resonance spectroscopy[J]. Int J Parasitol, 2009, 39(5):547-558.
doi: 10.1016/j.ijpara.2008.10.010 |
[22] |
Garcia-Perez I, Angulo S, Utzinger J, et al. Chemometric and biological validation of a capillary electrophoresis metabolomic experiment of Schistosoma mansoni infection in mice[J]. Electrophoresis, 2010, 31(14):2338-2348.
doi: 10.1002/elps.200900523 pmid: 20583011 |
[23] |
Garcia-Perez I, Couto Alves A, Angulo S, et al. Bidirectional correlation of NMR and capillary electrophoresis fingerprints: a new approach to investigating Schistosoma mansoni infection in a mouse model[J]. Anal Chem, 2010, 82(1):203-210.
doi: 10.1021/ac901728w pmid: 19961175 |
[24] |
Balog CI, Meissner A, Göraler S, et al. Metabonomic investigation of human Schistosoma mansoni infection[J]. Mol Biosyst, 2011, 7(5):1473-1480.
doi: 10.1039/c0mb00262c |
[25] |
Gouveia LR, Santos JC, Silva RD, et al. Diagnosis of coinfection by schistosomiasis and viral hepatitis B or C using 1H NMR-based metabonomics[J]. PLoS One, 2017, 12(8):e0182196.
doi: 10.1371/journal.pone.0182196 |
[26] |
Wang YL, Utzinger J, Xiao SH, et al. System level metabolic effects of a Schistosoma japonicum infection in the Syrian hamster[J]. Mol Biochem Parasitol, 2006, 146(1):1-9.
doi: 10.1016/j.molbiopara.2005.10.010 |
[27] |
Wu JF, Xu WX, Ming ZP, et al. Metabolic changes reveal the development of schistosomiasis in mice[J]. PLoS Negl Trop Dis, 2010, 4(8):e807.
doi: 10.1371/journal.pntd.0000807 |
[28] |
Huang YZ, Wu Q, Zhao L, et al. UHPLC-MS-based metabolomics analysis reveals the process of schistosomiasis in mice[J]. Front Microbiol, 2020, 11:1517.
doi: 10.3389/fmicb.2020.01517 |
[29] |
Wu JF, Holmes E, Xue J, et al. Metabolic alterations in the hamster co-infected with Schistosoma japonicum and Necator americanus[J]. Int J Parasitol, 2010, 40(6):695-703.
doi: 10.1016/j.ijpara.2009.11.003 |
[30] |
Zhu XY, Chen L, Wu JF, et al. Salmonella typhimurium infection reduces Schistosoma japonicum worm burden in mice[J]. Sci Rep, 2017, 7(1):1349.
doi: 10.1038/s41598-017-00992-1 |
[31] |
Hu Y, Sun L, Yuan ZY, et al. High throughput data analyses of the immune characteristics of Microtus fortis infected with Schistosoma japonicum[J]. Sci Rep, 2017, 7(1):11311.
doi: 10.1038/s41598-017-11532-2 pmid: 28900150 |
[32] |
Liu R, Cheng WJ, Tang HB, et al. Comparative metabonomic investigations of Schistosoma japonicum from SCID mice and BALB/c mice: clues to developmental abnormality of schistosome in the immunodeficient host[J]. Front Microbiol, 2019, 10:440.
doi: 10.3389/fmicb.2019.00440 |
[33] |
Zhang XL, Hu XY, Chen R, et al. Perturbations of metabolomic profiling of spleen from rats infected with Clonorchis sinensis determined by LC-MS/MS method[J]. Front Mol Biosci, 2020, 7:561641.
doi: 10.3389/fmolb.2020.561641 |
[34] |
Saric J, Li JV, Utzinger J, et al. Systems parasitology: effects of Fasciola hepatica on the neurochemical profile in the rat brain[J]. Mol Syst Biol, 2010, 6:396.
doi: 10.1038/msb.2010.49 |
[35] |
Kokova DA, Kostidis S, Morello J, et al. Exploratory metabolomics study of the experimental opisthorchiasis in a laboratory animal model (golden hamster, Mesocricetus auratus)[J]. PLoS Negl Trop Dis, 2017, 11(10):e0006044.
doi: 10.1371/journal.pntd.0006044 |
[36] |
Hosch W, Junghanss T, Stojkovic M, et al. Metabolic viability assessment of cystic echinococcosis using high-field 1H MRS of cyst contents[J]. NMR Biomed, 2008, 21(7):734-754.
doi: 10.1002/nbm.v21:7 |
[37] |
Lin C, Chen Z, Zhang L, et al. Deciphering the metabolic perturbation in hepatic alveolar echinococcosis: a 1H NMRbased metabolomics study[J]. Parasit Vectors, 2019, 12(1):300.
doi: 10.1186/s13071-019-3554-0 |
[38] |
Vasta JD, Fried B, Sherma J. High performance thin layer chromatographic analysis of neutral lipids in the urine of BALB/c mice infected with Echinostoma caproni[J]. Parasitol Res, 2008, 102(4):625-629.
doi: 10.1007/s00436-007-0798-y |
[39] |
Saric J, Li JV, Wang YL, et al. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery[J]. PLoS Negl Trop Dis, 2008, 2(7):e254.
doi: 10.1371/journal.pntd.0000254 |
[40] |
Saric J, Li JV, Wang YL, et al. Panorganismal metabolic response modeling of an experimental Echinostoma caproni infection in the mouse[J]. J Proteome Res, 2009, 8(8):3899-3911.
doi: 10.1021/pr900185s |
[41] |
Wang YL, Xiao SH, Xue J, et al. Systems metabolic effects of a Necator americanus infection in Syrian hamster[J]. J Proteome Res, 2009, 8(12):5442-5450.
doi: 10.1021/pr900711j |
[42] |
Houlden A, Hayes KS, Bancroft AJ, et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: effects reversed by pathogen clearance[J]. PLoS One, 2015, 10(5):e0125945.
doi: 10.1371/journal.pone.0125945 |
[43] |
Melo CF, Esteves CZ, de Oliveira RN, et al. Early developmental stages of Ascaris lumbricoides featured by high-resolution mass spectrometry[J]. Parasitol Res, 2016, 115(11):4107-4114.
doi: 10.1007/s00436-016-5183-2 |
[44] |
Zheng WB, Zou Y, Elsheikha HM, et al. Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara canis[J]. Parasit Vectors, 2019, 12(1):447.
doi: 10.1186/s13071-019-3703-5 |
[45] |
Martin FP, Verdu EF, Wang YL, et al. Transgenomic metabolic interactions in a mouse disease model: interactions of Trichinella spiralis infection with dietary Lactobacillus paracasei supplementation[J]. J Proteome Res, 2006, 5(9):2185-2193.
doi: 10.1021/pr060157b |
[46] |
Globisch D, Eubanks LM, Shirey RJ, et al. Validation of onchocerciasis biomarker N-acetyltyramine-O-glucuronide (NATOG)[J]. Bioorg Med Chem Lett, 2017, 27(15):3436-3440.
doi: S0960-894X(17)30581-4 pmid: 28600214 |
[47] |
Crusco A, Whiteland H, Baptista R, et al. Antischistosomal properties of sclareol and its heck-coupled derivatives: design, synjournal, biological evaluation, and untargeted metabolomics[J]. ACS Infect Dis, 2019, 5(7):1188-1199.
doi: 10.1021/acsinfecdis.9b00034 |
[48] |
Wangchuk P, Kouremenos K, Eichenberger RM, et al. Metabolomic profiling of the excretory-secretory products of hookworm and whipworm[J]. Metabolomics, 2019, 15(7):101.
doi: 10.1007/s11306-019-1561-y pmid: 31254203 |
[49] | Wangchuk P, Shepherd C, Constantinoiu C, et al. Hookworm-derived metabolites suppress pathology in a mouse model of colitis and inhibit secretion of key inflammatory cytokines in primary human leukocytes[J]. Infect Immun, 2019, 87(4):e00851-e00818. |
[50] |
Wangchuk P, Lavers O, Wishart DS, et al. Excretory/secretory metabolome of the zoonotic roundworm parasite Toxocara canis[J]. Biomolecules, 2020, 10(8):1157.
doi: 10.3390/biom10081157 |
[51] |
Zhu W, Baggerman G, Secor WE, et al. Dracunculus medinensis and Schistosoma mansoni contain opiate alkaloids[J]. Ann Trop Med Parasitol, 2002, 96(3):309-316.
doi: 10.1179/000349802125000808 |
[52] |
Robijn ML, Koeleman CA, Hokke CH, et al. Schistosoma mansoni eggs excrete specific free oligosaccharides that are detectable in the urine of the human host[J]. Mol Biochem Parasitol, 2007, 151(2):162-172.
doi: 10.1016/j.molbiopara.2006.10.018 |
[1] | TAN Xiao, ZHU Qi, LIU Zhongqi, LI Jia, PENG Dingjin. Immunogenicity of Schistosoma japonicum Sj26gst mRNA vaccine candidate [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 546-551. |
[2] | LIU Huaman, Bikash Giri, FANG Chuantao, ZHENG Yameng, WU Huixin, ZENG Minhao, LI Shan, CHENG Guofeng. Identification of gender associated m6A modified circRNA in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 552-558. |
[3] | LU Junxia, XU Junying, ZHAO Bin, WANG Qianwen, LI Wenhua, GENG Yuqing, HOU Jun, WU Xiangwei, CHEN Xueling. Echinococcus granulosus infection induces macrophages to express CD73 and A2AR to suppress inflammatory response [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 559-566. |
[4] | LI Xiaoqin, LAI Yashi, CHEN Yu, LV Jiahui, WEI Shuai, ZHANG Lilin, HE Shanshan, SHI Yunliang, LI Yanwen. Ultrastructural observation on excystment of metacercaria of Clonorchis sinensis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 601-608. |
[5] | HUANG Mengyu, CHEN Dikun, CHEN Huiru, FAN Mengpei, LIU Junyou, QUAN Yunfan. Investigation on Angiostrongylus cantonensis infection in Achatina fulica in Haikou wetland park [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 640-643. |
[6] | ZHANG Li, MIAO Feng, SHEN Yanmei. A case of Capillaria hepatica infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 650-652. |
[7] | QIN Peixi, ZHOU Caixian, LU Zhigang, ZHANG Biying, ZHOU Taoxun, HU Min. Identification of miRNAs in the infectious third stage larvae and parasitic female adult of Strongyloides stercoralis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 412-420. |
[8] | XU Yin, LIU Ting, XU Hui, ZENG Xiaojun, LAN Weiming, GONG Zhihong, DAI Kunjiao, QIU Tingting, HAO Xian, XIE Shuying. Establishment and application of PCR-CRISPR/Cas12a-based detection method for Clonorchis sinensis metacercaria [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 421-426. |
[9] | CAI Zhanghuang, ZHANG Zhiping, ZHUO Mingying, GUO Liping, FU Zhihui, LIU Yiruo. Trematode egg internal transcribed space-2 sequence based analysis for diagnosis of Opisthorchis viverrin and Opisthorchis sinensis infections [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 427-433. |
[10] | CAO Deping, LI Jiajing, SONG Mengwei, MO Gang. Experimental observation on the changes of hepatic stellate cells stimulated in vitro with tissue protein of Echinococcus multilocularis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 440-445. |
[11] | ZHANG Juan, TAO Hong, LI Yanzhong, WANG Tingting, YANG Jingjing, XIANG Yibin, CHEN Yishan, ZHOU Xiaomei. Survey on Angiostrongylus cantonensis infection in common snails in Yunnan Province from 2017 to 2022 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 464-469. |
[12] | CHEN Yao, ZHANG Benguang. Research advances on the taxonomy of Anisakis, Anisakidae [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 480-485. |
[13] | ZHANG Xu, SUN Ximeng. Research progress on the immune evasion mechanism in Trichinella spiralis infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 492-496. |
[14] | YE Jingming, HE Wei, LIU Huiyuan, YU Xiao, LUO Bo, LIU Meichen, ZHOU Biying. Effect of excretory-secretory antigen TPx of Cysticercus cellulosae on activation of dendritic cells in piglets [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 286-293. |
[15] | WU Xiaoying, HU Yuan, CAO Jianping. Preparation of Echinococcus granulosus peptide embedded in chitosan quaternary ammonium salt nanoparticles [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 300-305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||