CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2023, Vol. 41 ›› Issue (3): 300-305.doi: 10.12140/j.issn.1000-7423.2023.03.006
• ORIGINAL ARTICLES • Previous Articles Next Articles
WU Xiaoying(), HU Yuan*(
), CAO Jianping
Received:
2022-11-10
Revised:
2023-03-26
Online:
2023-06-30
Published:
2023-05-30
Contact:
*E-mail: Supported by:
CLC Number:
WU Xiaoying, HU Yuan, CAO Jianping. Preparation of Echinococcus granulosus peptide embedded in chitosan quaternary ammonium salt nanoparticles[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 300-305.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2023.03.006
Table 1
Solution states under different preparation conditions
编号 Number | HACC浓度 /mg·ml-1 Concentration of HACC /mg·ml-1 | TPP浓度 /mg·ml-1 Concentration of TPP /mg·ml-1 | 质量比(HACC∶TPP) Mass ratio (HACC∶TPP) | 溶液状态 Solution state |
---|---|---|---|---|
1 | 1.00 | 0.25 | 11∶1 | 澄清 Clarify |
2 | 1.00 | 0.50 | 10∶1 | 澄清 Clarify |
3 | 1.00 | 0.75 | 9∶1 | 澄清 Clarify |
4 | 1.00 | 1.00 | 8∶1 | 乳光 Milky light |
5 | 0.75 | 0.75 | 11∶1 | 澄清 Clarify |
6 | 0.75 | 1.00 | 10∶1 | 澄清 Clarify |
7 | 0.75 | 0.25 | 9∶1 | 乳光 Milky light |
8 | 0.75 | 0.50 | 8∶1 | 乳光 Milky light |
9 | 0.50 | 0.50 | 11∶1 | 乳光 Milky light |
10 | 0.50 | 0.25 | 10∶1 | 乳光 Milky light |
11 | 0.50 | 1.00 | 9∶1 | 乳光 Milky light |
12 | 0.50 | 0.75 | 8∶1 | 乳光 Milky light |
13 | 0.25 | 0.25 | 11∶1 | 乳光 Milky light |
14 | 0.25 | 0.50 | 10∶1 | 乳光 Milky light |
15 | 0.25 | 0.75 | 9∶1 | 沉淀 Precipitate |
16 | 0.25 | 1.00 | 8∶1 | 沉淀 Precipitate |
Table 2
Particle size, zeta potential, PDI and encapsulation rate of nanoparticles at different HACC/TPP mass ratios
分组 Group | 质量比(HACC∶TPP) Mass ratio (HACC∶ TPP) | 粒径/nm Particle size/nm | 多分散系数 PDI | Zeta 电位/mV Zeta potential/mV | 包封率/% Entrapment efficiency/% |
---|---|---|---|---|---|
1 | 8∶1 | 310.50 ± 4.20 | 0.23 ± 0.01 | 28.27 ± 0.63 | 58.56 ± 0.91 |
2 | 9∶1 | 296.20 ± 1.59a | 0.25 ± 0.01 | 29.63 ± 0.49 | 53.44 ± 2.24b |
3 | 10∶1 | 325.77 ± 1.76c | 0.25 ± 0.01 | 30.97 ± 0.66 | 53.01 ± 0.61 |
4 | 11∶1 | 333.37 ± 3.06 | 0.26 ± 0.01 | 31.97 ± 0.21 | 48.24 ± 1.75 |
Table 3
Particle size, zeta potential, PDI and encapsulation rate of nanoparticles at different TPP concentrations
分组 Group | TPP浓度/mg·ml-1 Concentration of TPP/mg·ml-1 | 粒径/nm Particle size/nm | 多分散系数 PDI | Zeta 电位/mV Zeta potential/mV | 包封率/% Entrapment efficiency/% |
---|---|---|---|---|---|
1 | 0.25 | 339.80 ± 1.61 | 0.26 ± 0.01 | 29.03 ± 0.12 | 65.83 ± 0.93 |
2 | 0.50 | 296.20 ± 1.59a | 0.25 ± 0.01 | 29.63 ± 0.49 | 53.44 ± 2.24b |
3 | 0.75 | 313.97 ± 2.92c | 0.27 ± 0.02 | 29.63 ± 0.40 | 52.55 ± 0.71 |
4 | 1.00 | 319.10 ± 1.39 | 0.24 ± 0.01 | 28.83 ± 0.39 | 55.72 ± 3.87 |
Table 4
Particle size, zeta potential, PDI and encapsulation rate of nanoparticles at different HACC concentrations
分组 Group | HACC浓度/mg·ml-1 Concentration of HACC/mg·ml-1 | 粒径/nm Particle size/nm | 多分散系数 PDI | Zeta 电位/mV Zeta potential/mV | 包封率/% Entrapment efficiency/% |
---|---|---|---|---|---|
1 | 0.25 | 307.37 ± 2.17 | 0.23 ± 0.01 | 29.77 ± 0.46 | 75.95 ± 1.60 |
2 | 0.50 | 296.20 ± 1.59a | 0.25 ± 0.01 | 29.63 ± 0.49 | 53.44 ± 2.24b |
3 | 0.75 | 280.93 ± 1.47c | 0.27 ± 0.01 | 29.47 ± 0.25 | 35.99 ± 2.53d |
4 | 1.00 | - | - | - | - |
[1] |
Anvari D, Rezaei F, Ashouri A, et al. Current situation and future prospects of Echinococcus granulosus vaccine candidates: a systematic review[J]. Transbound Emerg Dis, 2021, 68(3): 1080-1096.
doi: 10.1111/tbed.v68.3 |
[2] |
Pourseif MM, Moghaddam G, Saeedi N, et al. Current status and future prospective of vaccine development against Echinococcus granulosus[J]. Biologicals, 2018, 51: 1-11.
doi: 10.1016/j.biologicals.2017.10.003 |
[3] |
Zhang F, Li S, Zhu Y, et al. Immunization of mice with EGG1Y162-1/2 provides protection against Echinococcus granulosus infection in BALB/c mice[J]. Mol Immunol, 2018, 94: 183-189.
doi: 10.1016/j.molimm.2018.01.002 |
[4] | Zhu GQ, Yan HB, Li L, et al. Advances in research on vaccines against echinococcosis[J]. Chin J Zoonoses, 2019, 35(1): 59-65. (in Chinese) |
(朱国强, 闰鸿斌, 李立, 等. 棘球蚴(包虫)病疫苗研究进展[J]. 中国人兽共患病学报, 2019, 35(1): 59-65.) | |
[5] | Xu T, Liu L, Shi C, et al. A recombinant rabies virus expressing Echinococcus granulosus EG95 induces protective immunity in mice[J]. Transbound Emerg Dis, 2022, 69(4): e254-e266. |
[6] |
Parvizpour S, Pourseif MM, Razmara J, et al. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches[J]. Drug Discov Today, 2020, 25(6): 1034-1042.
doi: S1359-6446(20)30113-6 pmid: 32205198 |
[7] |
Negahdaripour M, Golkar N, Hajighahramani N, et al. Harnessing self-assembled peptide nanoparticles in epitope vaccine design[J]. Biotechnol Adv, 2017, 35(5): 575-596.
doi: S0734-9750(17)30054-X pmid: 28522213 |
[8] |
Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery[J]. Drug Des Dev Ther, 2016, 10: 483-507.
doi: 10.2147/DDDT.S99651 pmid: 26869768 |
[9] |
Sivanesan I, Gopal J, Muthu M, et al. Green synthesized chitosan/chitosan nanoforms/nanocomposites for drug delivery applications[J]. Polymers, 2021, 13(14): 2256.
doi: 10.3390/polym13142256 |
[10] |
Chae KS, Shin CS, Shin WS. Characteristics of cricket (Gryllus bimaculatus) chitosan and chitosan-based nanoparticles[J]. Food Sci Biotechnol, 2018, 27(3): 631-639.
doi: 10.1007/s10068-018-0314-4 |
[11] |
Shariatinia Z. Pharmaceutical applications of chitosan[J]. Adv Colloid Interface Sci, 2019, 263: 131-194.
doi: 10.1016/j.cis.2018.11.008 |
[12] |
Balasubramaniyan M, Santhanam M, Vinayagam V, et al. Immunomodulatory effects of chitosan nanoparticles as vaccine delivery agent against lymphatic filariasis through mucosalimmunization[J]. Int J Biol Macromol, 2022, 222: 2392-2398.
doi: 10.1016/j.ijbiomac.2022.10.025 |
[13] |
Li YJ, Zhu YJ, Sha T, et al. A multi-epitope chitosan nanoparticles vaccine of canine against Echinococcus granulosus[J]. J Biomed Nanotechnol, 2021, 17(5): 910-920.
doi: 10.1166/jbn.2021.3065 |
[14] |
Xu Y, Zhou Z, Brooks B, et al. Layer-by-layer delivery of multiple antigens using trimethylchitosan nanoparticles as a malaria vaccine candidate[J]. Front Immunol, 2022, 13: 900080.
doi: 10.3389/fimmu.2022.900080 |
[15] |
Tamara FR, Lin C, Mi FL, et al. Antibacterial effects of chitosan/cationic peptide nanoparticles[J]. Nanomaterials (Basel), 2018, 8(2): 88.
doi: 10.3390/nano8020088 |
[16] |
Chen KY, Zeng SY. Fabrication of quaternized chitosan nanoparticles using tripolyphosphate/genipin dual cross-linkers as a protein delivery system[J]. Polymers, 2018, 10(11): 1226.
doi: 10.3390/polym10111226 |
[17] |
Gao Y, Gong X, Yu S, et al. Immune enhancement of N-2-hydroxypropyl trimethyl ammonium chloride chitosan/carboxymethyl chitosan nanoparticles vaccine[J]. Int J Biol Macromol, 2022, 220: 183-192.
doi: 10.1016/j.ijbiomac.2022.08.073 pmid: 35981671 |
[18] | Rodrigues Dos Santos Junior S, Kelley Lopes da Silva F, Santos Dias L, et al. Intranasal vaccine using P10 peptide complexed within chitosan polymeric nanoparticles as experimental therapy for paracoccidioidomycosis in murine model[J]. J Fungi (Basel), 2020, 6(3): 160. |
[19] |
Ahmad Mahmood M, Madni A, Rehman M, et al. Ionically cross-linked chitosan nanoparticles for sustained delivery of docetaxel: fabrication, post-formulation and acute oral toxicity evaluation[J]. Int J Nanomed, 2019, 14: 10035-10046.
doi: 10.2147/IJN.S232350 pmid: 31908458 |
[20] |
Wang D, Jiang W. Preparation of chitosan-based nanoparticles for enzyme immobilization[J]. Int J Biol Macromol, 2019, 126: 1125-1132.
doi: S0141-8130(18)34791-3 pmid: 30594622 |
[21] |
Rappuoli R, Serruto D. Self-assembling nanoparticles usher in a new era of vaccine design[J]. Cell, 2019, 176(6): 1245-1247.
doi: S0092-8674(19)30157-6 pmid: 30849370 |
[22] |
Albalawi AE, Alanazi AD, Baharvand P, et al. High potency of organic and inorganic nanoparticles to treat cystic echinococcosis: an evidence-based review[J]. Nanomaterials (Basel), 2020, 10(12): 2538.
doi: 10.3390/nano10122538 |
[23] |
Lei Y, Zhao FR, Shao JJ, et al. Application of built-in adjuvants for epitope-based vaccines[J]. PeerJ, 2019, 6: e6185.
doi: 10.7717/peerj.6185 |
[24] |
Guo JJ, Sun XH, Yin HQ, et al. Chitosan microsphere used as an effective system to deliver a linked antigenic peptides vaccine protect mice against acute and chronic toxoplasmosis[J]. Front Cell Infect Microbiol, 2018, 8: 163.
doi: 10.3389/fcimb.2018.00163 |
[25] |
Pathak K, Misra SK, Sehgal A, et al. Biomedical applications of quaternizedchitosan[J]. Polymers, 2021, 13(15): 2514.
doi: 10.3390/polym13152514 |
[26] |
Li X, Xing R, Xu C, et al. Immunostimulatory effect of chitosan and quaternary chitosan: a review of potential vaccine adjuvants[J]. Carbohydr Polym, 2021, 264: 118050.
doi: 10.1016/j.carbpol.2021.118050 |
[27] |
Zhao YH, Du WW, Wu HH, et al. Chitosan/sodium tripolyphosphate nanoparticles as efficient vehicles for enhancing the cellular uptake of fish-derived peptide[J]. J Food Biochem, 2019, 43(2): e12730.
doi: 10.1111/jfbc.2019.43.issue-2 |
[28] |
Du Z, Liu J, Zhang T, et al. A study on the preparation of chitosa-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides[J]. Food Chem, 2019, 286: 530-536.
doi: 10.1016/j.foodchem.2019.02.012 |
[29] |
Hejjaji EMA, Smith AM, Morris GA. Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS∶TPP) ratios[J]. Int J Biol Macromol, 2018, 120: 1610-1617.
doi: 10.1016/j.ijbiomac.2018.09.185 |
[30] |
IranpurMobarakeh V, Modarressi MH, Rahimi P, et al. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle[J]. Int J Biol Macromol, 2019, 129: 305-315.
doi: S0141-8130(18)37126-5 pmid: 30738164 |
[31] |
Changsan N, Sinsuebpol C. Dry powder inhalation formulation of chitosan nanoparticles for co-administration of isoniazid and pyrazinamide[J]. Pharm Dev Technol, 2021, 26(2): 181-192.
doi: 10.1080/10837450.2020.1852570 pmid: 33213232 |
[32] |
Aline Bruinsmann F, Pigana S, Aguirre T, et al. Chitosan-coated nanoparticles: effect of chitosan molecular weight on nasal transmucosaldelivery[J]. Pharmaceutics, 2019, 11(2): 86.
doi: 10.3390/pharmaceutics11020086 |
[33] |
Omer AM, Ziora ZM, Tamer TM, et al. Formulation of quaternizedaminated chitosan nanoparticles for efficient encapsulation and slow release of curcumin[J]. Molecules, 2021, 26(2): 449.
doi: 10.3390/molecules26020449 |
[34] |
AbdelAllah NH, Gaber Y, Rashed ME, et al. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice[J]. Int J Biol Macromol, 2020, 152: 904-912.
doi: S0141-8130(20)30539-0 pmid: 32114177 |
[35] |
Pant A, Negi JS. Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-β-CD inclusion complex[J]. Eur J Pharm Sci, 2018, 112: 180-185.
doi: S0928-0987(17)30649-8 pmid: 29191520 |
[1] | LU Junxia, XU Junying, ZHAO Bin, WANG Qianwen, LI Wenhua, GENG Yuqing, HOU Jun, WU Xiangwei, CHEN Xueling. Echinococcus granulosus infection induces macrophages to express CD73 and A2AR to suppress inflammatory response [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 559-566. |
[2] | LI Benfu, WANG Zhengqing, XU Qian, ZI Jinrong, YAN Xinliu, PENG Jia, LI Jianxiong, CAI Xuan, WU Fangwei, YANG Yaming. Sequence analysis of mitochondrial co1 and nd1 genes in Echinococcus granulosus in Yunnan Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 306-311. |
[3] | GUO Gang, REN Yuan, JIAO Hongjie, WU Juan, GUO Baoping, QI Wenjing, LI Jun, ZHANG Wenbao. Effect of intraperitoneal inoculation with Echinococcus microcysts on the infection and pathogenicity of E. multilocularis in mouse liver [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 156-162. |
[4] | JIAO Hongjie, QI Wenjing, GUO Gang, BAO Jianling, WU Chuanchuan, SONG Chuanlong, LI Jun, ZHANG Wenbao, YAN Mei. Polarization effect of Echinococcus granulosus antigen B on the mouse macrophage RAW264.7 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 23-28. |
[5] | WU De-fang, FU Yong, REN Bin, ZHANG Yao-gang, XU Xiao-lei, PANG Ming-quan, FAN Hai-ning. Genetic diversity and differentiation time of human isolates of Echinococcus granulosus and E. multilocularis from Qinghai [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 610-615. |
[6] | QIAO Shi-yuan, ZHOU Xue, LIU Cheng-hao, JIANG Hui-jiao, BU Yuan-yuan, CHEN Xue-ling, WU Xiang-wei. Effect of albendazole-loaded vesicles on the vitality of protoscoleces of Echinococcus granulosus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 324-329. |
[7] | SUN Ye-ting, JIANG Nan, JIANG Yan-yan, LI Teng, JIANG Xiao-feng, CAO Jian-ping, SHEN Yu-juan. Study on the polarization of MDSC stimulated by Echinococcus granulosus protoscolex-derived exosomes in vitro [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 175-180. |
[8] | ZHOU Wen-zheng, SUN Jun-gang, ZHAO Xi-bin, CAO Li. Therapeutic effect of intensity modulated radiation therapy on secondary femur infection with Echinococcus granulosus in rats [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 443-448. |
[9] | TIAN Meng-xiao, ZANG Xiao-yan, GUO Gang, QI Wen-jing, GUO Bao-ping, REN Yuan, LI Jun, ZHANG Wen-bao. Expression and activity assay of serine protease in Echinococcus granulosus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(2): 233-239. |
[10] | FAN Jun-jie, HAN Xiu-min, Nur Fazleen Binti Idris, LI Kai, TAN Qing-qing, CAO Wen-qiao, LI Xiang, LIAO Peng, YE Bin. Bioinformatics characteristics and immunoreactivity of protein kinase A of Echinococcus granulosus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 682-687. |
[11] | SHI Chun-li, YANG Hui, PAN Wen, ZHANG Xin, ZHU Xiao-ting, ZHAO Jia-qing. Proteomic analysis of human proteins in extracellular vesicles secreted by protoscoleces of Echinococcus granulosus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(6): 695-701. |
[12] | YU Xiao-dong, YALI Ya-sen, WANG Jia-ling, LI Meng, YE Jian-rong. Establishment of BALB/c mouse model of Echinococcus granulosus-induced sensitization and changes of related immune cells [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(4): 412-416. |
[13] | CAO Sheng-kui, ZHANG Xiao-fan, WEI Yu-huan, PAN Jia-ming, CAO Jian-ping, SHEN Yu-juan, CHEN Jia-xu. Expression and function of arginase in livers of mice infected with Echinococcus granulosus [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(3): 304-309. |
[14] | ZHOU Hong-rang, MAO Guang-yao, WANG Xiao-ling, CHEN Mu-xin, YU Qing, WANG Ying, Ai Lin, XIAO Ning. Establishment and application of a multiplex recombinase-aided isothermal amplification technique for identifying Echinococcus granulosus and Echinococcus multilocularis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(3): 310-316. |
[15] | CHEN He-jie, JIANG Hui-jiao, LIANG Qian, Wu Jie, GUI Xian-wei, ZOU Hai-liang, XING Zhi-kun, WANG Er-qiang, CHEN Xue-ling, WU Xiang-wei. Effects of supernatant of different hepatoma cells on the vitality of Echinococcus granulosus protoscoleces in vitro [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(3): 317-323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||