[1] | McManus DP, Dunne DW, Sacko M, et al. Schistosomiasis[J]. Nat Rev Dis Primers, 2018, 4: 13. | [2] | Lin JJ. Endemic status and control of animal schistosomiasis in China[J]. Chin J Schisto Control, 2019, 31(1): 40-46. (in Chinese) | | (林矫矫. 我国家畜血吸虫病流行情况及防控进展[J]. 中国血吸虫病防治杂志, 2019, 31(1): 40-46.) | [3] | Feng JX, Gong YF, Luo ZW, et al. Scientific basis of strategies for schistosomiasis control and prospect of the 14th Five-Year Plan in China[J]. Chin J Parasitol Parasit Dis, 2022, 40(4): 428-435. (in Chinese) | | (冯家鑫, 公衍峰, 罗卓韦, 等. 我国血吸虫病防治策略的科学基础与“十四五”展望[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 428-435.) | [4] | Lu S, Wang SX, Grimes-Serrano JM. Current progress of DNA vaccine studies in humans[J]. Expert Rev Vaccines, 2008, 7(2): 175-191. | [5] | Cai Y, Rodriguez S, Hebel H. DNA vaccine manufacture: scale and quality[J]. Expert Rev Vaccines, 2009, 8(9): 1277-1291. | [6] | Ledwith BJ, Manam S, Troilo PJ, et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice[J]. Intervirology, 2000, 43(4/5/6): 258-272. | [7] | Li MY, Wang ZN, Xie CY, et al. Advances in mRNA vaccines[J]. Int Rev Cell Mol Biol, 2022, 372: 295-316. | [8] | De Beuckelaer A, Grooten J, De Koker S. Type I interferons modulate CD8+ T cell immunity to mRNA vaccines[J]. Trends Mol Med, 2017, 23(3): 216-226. | [9] | McManus DP, Loukas A. Current status of vaccines for schistosomiasis[J]. Clin Microbiol Rev, 2008, 21(1): 225-242. | [10] | Tang CL, Pan Q, Dai WQ, et al. Administration of anti-CTLA-4 monoclonal antibody augments protective immunity induced by Schistosoma japonicum glutathione-S-transferase[J]. Parasite Immunol, 2019, 41(8): e12657. | [11] | Arnon R, Tarrab-Hazdai R, Steward M. A mimotope peptide-based vaccine against Schistosoma mansoni: synthesis and characterization[J]. Immunology, 2000, 101(4): 555-562. | [12] | Chen B, Zhang GL, Zhang GH. Research progress on clinical trials of schistosomiasis vaccine candidates[J]. Chin J Parasitol Parasit Dis, 2022, 40(4): 511-515. (in Chinese) | | (陈兵, 张国莉, 张高红. 血吸虫病候选疫苗临床研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 511-515.) | [13] | Pourseif MM, Masoudi-Sobhanzadeh Y, Azari E, et al. Self-amplifying mRNA vaccines: mode of action, design, development and optimization[J]. Drug Discov Today, 2022, 27(11): 103341. | [14] | Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity[J]. Expert Rev Vaccines, 2016, 15(3): 313-329. | [15] | Tan X, Xiao CL, Xiao F, et al. Immunoprotective effect of DNA vaccine against Schistosoma japonicum surface membrane protein SjOST48[J]. Chin J Parasitol Parasit Dis, 2021, 37(7): 791-795. (in Chinese) | | (谭潇, 肖楚丽, 肖非, 等. 日本血吸虫表膜蛋白SjOST48 DNA疫苗的免疫保护作用研究[J]. 中国免疫学杂志, 2021, 37(7): 791-795.) | [16] | Wadman M. The overlooked superpower of mRNA vaccines[J]. Science, 2021, 373(6554): 479. | [17] | Pardi N, Carre?o JM, O’dell G, et al. Development of a pentavalent broadly protective nucleoside-modified mRNA vaccine against influenza B viruses[J]. Nat Commun, 2022, 13(1): 4677. | [18] | Rutitzky LI, Stadecker MJ. Exacerbated egg-induced immunopathology in murine Schistosoma mansoni infection is primarily mediated by IL-17 and restrained by IFN-γ[J]. Eur J Immunol, 2011, 41(9): 2677-2687. | [19] | VanBlargan LA, Himansu S, Foreman BM, et al. An mRNA vaccine protects mice against multiple tick-transmitted flavivirus infections[J]. Cell Rep, 2018, 25(12): 3382-3392.e3. | [20] | Pardi N, Hogan MJ, Pelc RS, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination[J]. Nature, 2017, 543(7644): 248-251. |
|