[1] | 张利娟, 何君逸, 杨帆, 等. 2023年全国血吸虫病防治进展[J]. 中国血吸虫病防治杂志, 2024, 36(3): 221-227. | | Zhang LJ, He JY, Yang F, et al. Progress of schistosomiasis control in People's Republic of China in 2023[J]. Chin J Schisto Control, 2024, 36(3): 221-227. (in Chinese) | [2] | Lo NC, Bezerra FSM, Colley DG, et al. Review of 2022 WHO guidelines on the control and elimination of schistosomiasis[J]. Lancet Infect Dis, 2022, 22(11): e327-e335. | [3] | Liu Z, Zhang L, Liang Y, et al. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis[J]. Front Cell Infect Microbiol, 2022, 12: 1035765. | [4] | Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. | [5] | Jiao J, Sastre D, Fiel MI, et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression[J]. Hepatology, 2012, 55(1): 244-255. | [6] | Li S, Zhou B, Xue M, et al. Macrophage-specific FGF12 promotes liver fibrosis progression in mice[J]. Hepatology, 2023, 77(3): 816-833. | [7] | Liu Y, Lui EL, Friedman SL, et al. PTK787/ZK22258 attenuates stellate cell activation and hepatic fibrosis in vivo by inhibiting VEGF signaling[J]. Lab Invest, 2009, 89(2): 209-221. | [8] | Tsay HC, Yuan Q, Balakrishnan A, et al. Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis[J]. J Hepatol, 2022, 77(1): 269. | [9] | 高元, 章孝成, 胡媛, 等. 自然杀伤细胞抑制血吸虫病肝纤维化作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 168-174. | | Gao Y, Zhang XC, Hu Y, et al. Study on the inhibitory effect of natural killer cells on liver fibrosis of schistosomiasis[J]. Chin J Parasitol Parasit Dis, 2022, 40(2): 168-174. (in Chinese) | [10] | Biron CA, Nguyen KB, Pien GC, et al. Natural killer cells in antiviral defense: Function and regulation by innate cytokines[J]. Annu Rev Immunol, 1999, 17: 189-220. | [11] | Robertson MJ. Role of chemokines in the biology of natural killer cells[J]. J Leukoc Biol, 2002, 71(2): 173-183. | [12] | Hu Y, Wang X, Wei Y, et al. Functional inhibition of natural killer cells in a BALB/c mouse model of liver fibrosis induced by Schistosoma japonicum infection[J]. Front Cell Infect Microbiol, 2020, 10: 598987. | [13] | Wijaya RS, Read SA, Schibeci S, et al. KLRG1+ natural killer cells exert a novel antifibrotic function in chronic hepatitis B[J]. J Hepatol, 2019, 71(2): 252-264. | [14] | Tao X, Zhang R, Du R, et al. EP3 enhances adhesion and cytotoxicity of NK cells toward hepatic stellate cells in a murine liver fibrosis model[J]. J Exp Med, 2022, 219(5): e20212414. | [15] | Gao Y, Zhang XC, Jiang TT, et al. Inhibition of hepatic natural killer cell function via the TIGIT receptor in schistosomiasis-induced liver fibrosis[J]. PLoS Pathog, 2023, 19(3): e1011242. | [16] | Zhou Z, Kim JW, Qi J, et al. Toll-Like receptor 5 signaling ameliorates liver fibrosis by inducing interferon β-modulated IL-1 receptor antagonist in mice[J]. Am J Pathol, 2020, 190(3): 614-629. | [17] | Zhang Y, Liu H, Jia W, et al. Myeloid differentiation protein 2 mediates angiotensin II-induced liver inflammation and fibrosis in mice[J]. Molecules, 2019, 25(1): 25. | [18] | Sheng J, Zhang B, Chen Y, et al. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages[J]. Immunopharmacol Immunotoxicol, 2020, 42(6): 556-563. | [19] | Steen EH, Wang X, Balaji S, et al. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis[J]. Adv Wound Care (New Rochelle), 2020, 9(4): 184-198. | [20] | Udomsinprasert W, Honsawek S, Poovorawan Y. Adiponectin as a novel biomarker for liver fibrosis[J]. World J Hepatol, 2018, 10(10): 708-718. | [21] | Shen B, Zhou C, Gu T, et al. Kuhuang alleviates liver fibrosis by modulating gut microbiota-mediated hepatic IFN signaling and bile acid synthesis[J]. Front Pharmacol, 2022, 13: 1080226. | [22] | Jovic D, Liang X, Zeng H, et al. Single-cell RNA sequencing technologies and applications: A brief overview[J]. Clin Transl Med, 2022, 12(3): e694. | [23] | Perez SA, Mahaira LG, Demirtzoglou FJ, et al. A potential role for hydrocortisone in the positive regulation of IL-15-activated NK-cell proliferation and survival[J]. Blood, 2005, 106(1): 158-166. | [24] | Bereshchenko O, Migliorati G, Bruscoli S, et al. Glucocorticoid-induced leucine zipper: Anovel anti-inflammatory molecule[J]. Front Pharmacol, 2019, 10: 308. | [25] | Bruscoli S, Riccardi C, Ronchetti S. GILZ as a regulator of cell fate and inflammation[J]. Cells, 2021, 11(1): 122. | [26] | Jones SA, Toh AE, Odobasic D, et al. Glucocorticoid-induced leucine zipper (GILZ) inhibits B cell activation in systemic lupus erythematosus[J]. Ann Rheum Dis, 2016, 75(4): 739-747. | [27] | Cannarile L, Delfino DV, Adorisio S, et al. Implicating the role of GILZ in glucocorticoid modulation of T-Cell activation[J]. Front Immunol, 2019, 10: 1823. | [28] | Bruscoli S, Biagioli M, Sorcini D, et al. Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and Results in B-cell lymphocytosis in mice[J]. Blood, 2015, 126(15): 1790-1801. | [29] | Flamini S, Sergeev P, Viana de Barros Z, et al. Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment[J]. Cell Death Dis, 2021, 12(5): 421. | [30] | Robert O, Boujedidi H, Bigorgne A, et al. Decreased expression of the glucocorticoid receptor-GILZ pathway in Kupffer cells promotes liver inflammation in obese mice[J]. J Hepatol, 2016, 64(4): 916-924. |
|