CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2022, Vol. 40 ›› Issue (6): 774-779.doi: 10.12140/j.issn.1000-7423.2022.06.013
• REVEEWS • Previous Articles Next Articles
CHEN Guo(), ZHU Dan-dan, DUAN Yi-nong(
)
Received:
2022-05-11
Revised:
2022-06-13
Online:
2022-12-30
Published:
2022-12-26
Contact:
DUAN Yi-nong
E-mail:1312408793@qq.com;yinongduan@aliyun.com
Supported by:
CLC Number:
CHEN Guo, ZHU Dan-dan, DUAN Yi-nong. Research progress of immune regulation protein B7 family on immune regulation during Schistosoma japonicum infection[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 774-779.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2022.06.013
配体 | 别名 | 受体 | 作用 |
---|---|---|---|
B7-1 | CD80 | CD28 CTLA-4 | 共刺激 共抑制 |
B7-2 | CD86 | CD28 CTLA-4 | 共刺激 共抑制 |
B7-H1 | PD-L1、CD274 | PD-1(CD279) | 共抑制 |
B7-DC | PD-L2、CD273 | PD-1(CD279) | 共抑制 |
B7-H2 | ICOSL、B7RP-1、 CD275 | ICOS (CD278) CD28 CTLA-4 | 共刺激 共刺激 未知 |
B7-H3 | CD276、B7RP-2 | 未知 | 共抑制 |
B7-H4 | VTCN1、B7x、B7S1 | 未知 | 共抑制 |
B7-H5 | VISTA、PD-1H | 未知 | 共抑制 |
B7-H6 | NCR3LG1 | NKp30 | 共刺激 |
B7-H7 | HHLA2 | TMIGD2(CD28H) 未知 | 共刺激 共抑制 |
[1] | Hong Y, Fu Z, Cao X, et al. Changes in microRNA expression in response to Schistosoma japonicum infection[J]. Parasite Immunol, 2017, 39(2): e12416. |
[2] |
Chen QL, Zhang JQ, Zheng T, et al. The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis[J]. Parasit Vectors, 2019, 12(1): 611.
doi: 10.1186/s13071-019-3866-0 pmid: 31888743 |
[3] |
Sica GL, Choi IH, Zhu GF, et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity[J]. Immunity, 2003, 18(6): 849-861.
doi: 10.1016/s1074-7613(03)00152-3 pmid: 12818165 |
[4] | Zhou S, Jin X, Li YL, et al. Blockade of PD-1 signaling enhances Th2 cell responses and aggravates liver immunopathology in mice with schistosomiasis japonica[J]. PLoS Negl Trop Dis, 2016, 10(10): e0005094. |
[5] |
McRae KM, Stear MJ, Good B, et al. The host immune response to gastrointestinal nematode infection in sheep[J]. Parasite Immunol, 2015, 37(12): 605-613.
doi: 10.1111/pim.12290 pmid: 26480845 |
[6] | Li QT, Qiu MJ, Yang SL, et al. Alpha-fetoprotein regulates the expression of immune-related proteins through the NF-κB (P65) pathway in hepatocellular carcinoma cells[J]. J Oncol, 2020, 2020: 9327512. |
[7] |
MacGregor HL, Ohashi PS. Molecular pathways: evaluating the potential for B7-H4 as an immunoregulatory target[J]. Clin Cancer Res, 2017, 23(12): 2934-2941.
doi: 10.1158/1078-0432.CCR-15-2440 pmid: 28325750 |
[8] |
Ahangar NK, Hemmat N, Khalaj-Kondori M, et al. The regulatory cross-talk between microRNAs and novel members of the B7 family in human diseases: a scoping review[J]. Int J Mol Sci, 2021, 22(5): 2652.
doi: 10.3390/ijms22052652 |
[9] |
Zhu HF, Li Y. Small-molecule targets in tumor immunotherapy[J]. Nat Prod Bioprospect, 2018, 8(4): 297-301.
doi: 10.1007/s13659-018-0177-7 |
[10] |
Wikenheiser DJ, Stumhofer JS. ICOS co-stimulation: friend or foe?[J]. Front Immunol, 2016, 7: 304.
doi: 10.3389/fimmu.2016.00304 pmid: 27559335 |
[11] | Mach P, Köninger A, Reisch B, et al. Soluble PD-L1 and B7-H4 serum levels during the course of physiological pregnancy[J]. Am J Reprod Immunol, 2022, 87(3): e13519. |
[12] |
Janakiram M, Chinai JM, Fineberg S, et al. Expression, clinical significance, and receptor identification of the newest B7 family member HHLA2 protein[J]. Clin Cancer Res, 2015, 21(10): 2359-2366.
doi: 10.1158/1078-0432.CCR-14-1495 pmid: 25549724 |
[13] |
Esensten JH, Helou YA, Chopra G, et al. CD28 costimulation: From mechanism to therapy[J]. Immunity, 2016, 44(5): 973-988.
doi: 10.1016/j.immuni.2016.04.020 pmid: 27192564 |
[14] |
Linsley PS, Brady W, Grosmaire L, et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation[J]. J Exp Med, 1991, 173(3): 721-730.
doi: 10.1084/jem.173.3.721 pmid: 1847722 |
[15] | Hosseini A, Gharibi T, Marofi F, et al. CTLA-4: from mechanism to autoimmune therapy[J]. Int Immunopharmacol, 2020, 80: 106221. |
[16] |
Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7[J]. J Exp Med, 1991, 174(3): 561-569.
doi: 10.1084/jem.174.3.561 pmid: 1714933 |
[17] |
Kraehenbuehl L, Weng CH, Eghbali S, et al. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways[J]. Nat Rev Clin Oncol, 2022, 19(1): 37-50.
doi: 10.1038/s41571-021-00552-7 |
[18] | Tian F, Xia CM, Luo W, et al. Effects of B7 costimulatory molecules on Th1/Th2 cytokine expression levels in the mice infected with Schistosoma japonicum[J]. J Trop Med, 2003, 3(2): 139-141, 206. (in Chinese) |
(田芳, 夏超明, 骆伟, 等. 协同刺激分子B7-1/2对日本血吸虫感染小鼠Th1/Th2细胞因子表达水平的影响[J]. 热带医学杂志, 2003, 3(2): 139-141, 206.) | |
[19] |
Reiser H, Stadecker MJ. Costimulatory B7 molecules in the pathogenesis of infectious and autoimmune diseases[J]. N Engl J Med, 1996, 335(18): 1369-1377.
doi: 10.1056/NEJM199610313351807 |
[20] |
Subramanian G, Kazura JW, Pearlman E, et al. B7-2 requirement for helminth-induced granuloma formation and CD4 type 2 T helper cell cytokine expression[J]. J Immunol, 1997, 158(12): 5914-5920.
pmid: 9190944 |
[21] |
Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS)[J]. Curr Opin Immunol, 2010, 22(3): 326-332.
doi: 10.1016/j.coi.2010.01.001 pmid: 20116985 |
[22] |
Nurieva RI, Duong J, Kishikawa H, et al. Transcriptional regulation of Th2 differentiation by inducible costimulator[J]. Immunity, 2003, 18(6): 801-811.
pmid: 12818161 |
[23] |
Yang Q, Qu JL, Jin CX, et al. Schistosoma japonicum infection promotes the response of Tfh cells through down-regulation of caspase-3-mediating apoptosis[J]. Front Immunol, 2019, 10: 2154.
doi: 10.3389/fimmu.2019.02154 |
[24] | Wang B, Liang S, Wang Y, et al. Th17 down-regulation is involved in reduced progression of schistosomiasis fibrosis in ICOSL KO mice[J]. PLoS Negl Trop Dis, 2015, 9(1): e0003434. |
[25] | Chen XJ, Yang XW, Li Y, et al. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection[J]. PLoS Pathog, 2014, 10(5): e1004097. |
[26] | Zhan TZ, Ma HH, Zhang TT, et al. Relation between ICOS signaling and Th9 cell polarization in mice infected with Schistosoma japonicum[J]. Chin J Schisto Control, 2018, 30(4): 436-439. (in Chinese) |
(战廷正, 马会会, 张婷婷, 等. ICOS信号与日本血吸虫感染小鼠Th9细胞极化的关系[J]. 中国血吸虫病防治杂志, 2018, 30(4): 436-439.) | |
[27] |
Mak TW, Shahinian A, Yoshinaga SK, et al. Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell-dependent B cell responses[J]. Nat Immunol, 2003, 4(8): 765-772.
pmid: 12833154 |
[28] |
Heizmann B, Kastner P, Chan SS. The Ikaros family in lymphocyte development[J]. Curr Opin Immunol, 2018, 51: 14-23.
doi: S0952-7915(17)30095-X pmid: 29278858 |
[29] | Wang Y, Cai R, Wang B, et al. Effects of Schistosoma japonicum infection on the CD28/CD86 signaling pathway and Th1/Th2 polarization in ICOS transgenic mice[J]. J Chin Med Univ, 2013, 42(6): 493-500. (in Chinese) |
(王瑜, 蔡茹, 王波, 等. ICOS转基因小鼠感染日本血吸虫对CD28/CD86表达及Th1/Th2极化的影响[J]. 中国医科大学学报, 2013, 42(6): 493-500.) | |
[30] |
van der Vlugt LEPM, Obieglo K, Ozir-Fazalalikhan A, et al. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function[J]. Int J Parasitol, 2017, 47(9): 545-554.
doi: S0020-7519(17)30098-X pmid: 28385494 |
[31] | Xu L, Qian X, Jin J, et al. Sex bias in generation and functional phenotypes of peripheral T follicular helper cells in schistosomiasis japonica[J]. Chin J Schisto Control, 2016, 28(2): 167-171. (in Chinese) |
(许磊, 钱香, 金姣, 等. 性别对日本血吸虫感染过程中滤泡辅助性T细胞比例和活性影响的初步分析[J]. 中国血吸虫病防治杂志, 2016, 28(2): 167-171.) | |
[32] |
Zhang YM, Jiang YY, Wang YJ, et al. Higher frequency of circulating PD-1highCXCR5+CD4+ Tfh cells in patients with chronic schistosomiasis[J]. Int J Biol Sci, 2015, 11(9): 1049-1055.
doi: 10.7150/ijbs.12023 |
[33] | Xie SH, Wei HX, Peng AP, et al. Ikzf2 regulates the development of ICOS+ Th cells to mediate immune response in the spleen of S. japonicum-infected C57BL/6 mice[J]. Front Immunol, 2021, 12: 687919. |
[34] | Xia CM, Pu XK, Gong W, et al. Immune response and immunopathology in inducible costimulatory molecule(ICOS) transgenic mice infected with Schistosoma japonicum[J]. Chin J Parasitol Parasit Dis, 2006, 24(5): 349-352. (in Chinese) |
夏超明, 濮翔科, 龚唯, 等. 日本血吸虫感染可诱导共刺激分子(ICOS)转基因小鼠的免疫应答及其病理反应[J]. 中国寄生虫学与寄生虫病杂志, 2006, 24(5): 349-352.) | |
[35] |
Wang YY, Lin C, Cao Y, et al. Up-regulation of interleukin-21 contributes to liver pathology of schistosomiasis by driving GC immune responses and activating HSCs in mice[J]. Sci Rep, 2017, 7(1): 16682.
doi: 10.1038/s41598-017-16783-7 pmid: 29192177 |
[36] |
Delmas D, Hermetet F, Aires V. PD-1/PD-L1 checkpoints and resveratrol: a controversial new way for a therapeutic strategy[J]. Cancers (Basel), 2021, 13(18): 4509.
doi: 10.3390/cancers13184509 |
[37] |
Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway[J]. Nat Rev Immunol, 2018, 18(3): 153-167.
doi: 10.1038/nri.2017.108 pmid: 28990585 |
[38] |
Smith P, Walsh CM, Mangan NE, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages[J]. J Immunol, 2004, 173(2): 1240-1248.
doi: 10.4049/jimmunol.173.2.1240 |
[39] |
Zhang YM, Wu YL, Liu H, et al. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection[J]. Parasites Vectors, 2021, 14(1): 497.
doi: 10.1186/s13071-021-05006-8 |
[40] | Gao YN, Chen L, Hou M, et al. TLR2 directing PD-L2 expression inhibit T cells response in Schistosoma japonicum infection[J]. PLoS One, 2013, 8(12): e82480. |
[41] |
Khan AR, Hams E, Floudas A, et al. PD-L1hi B cells are critical regulators of humoral immunity[J]. Nat Commun, 2015, 6: 5997.
doi: 10.1038/ncomms6997 pmid: 25609381 |
[42] |
Zhang Y, Morgan R, Chen C, et al. Mammary-tumor-educated B cells acquire LAP/TGF-β and PD-L1 expression and suppress anti-tumor immune responses[J]. Int Immunol, 2016, 28(9): 423-433.
doi: 10.1093/intimm/dxw007 pmid: 26895637 |
[43] |
Xiao JL, Guan F, Sun L, et al. B cells induced by Schistosoma japonicum infection display diverse regulatory phenotypes and modulate CD4+ T cell response[J]. Parasit Vectors, 2020, 13(1): 147.
doi: 10.1186/s13071-020-04015-3 |
[44] | Feng RR, Chen Y, Liu Y, et al. The role of B7-H3 in tumors and its potential in clinical application[J]. Int Immunopharmacol, 2021, 101: 108153. |
[45] |
Nagai S, Azuma M. The CD28-B7 family of co-signaling molecules[J]. Adv Exp Med Biol, 2019, 1189: 25-51.
doi: 10.1007/978-981-32-9717-3_2 pmid: 31758530 |
[46] |
Ueno T, Yeung MY, McGrath M, et al. Intact B7-H3 signaling promotes allograft prolongation through preferential suppression of Th1 effector responses[J]. Eur J Immunol, 2012, 42(9): 2343-2353.
doi: 10.1002/eji.201242501 pmid: 22733595 |
[47] |
Liu F, Zhang T, Zou ST, et al. B7-H3 promotes cell migration and invasion through the Jak2/Stat3/MMP9 signaling pathway in colorectal cancer[J]. Mol Med Rep, 2015, 12(4): 5455-5460.
doi: 10.3892/mmr.2015.4050 |
[48] |
Li YC, Guo GN, Song J, et al. B7-H3 promotes the migration and invasion of human bladder cancer cells via the PI3K/Akt/STAT3 signaling pathway[J]. J Cancer, 2017, 8(5): 816-824.
doi: 10.7150/jca.17759 pmid: 28382144 |
[49] | Li SX, Zhang GB, Sun HH, et al. Establishment of a sandwich ELISA for testing serum SB7-H3 and detection of SB7-H3 levels in liver disease[J]. Chin J Cell Mol Immunol, 2012, 28(1): 84-86, 90. (in Chinese) |
(李淑湘, 张光波, 孙海洪, 等. 人可溶性B7-H3酶联试剂盒的研制及在肝病患者血清中水平的检测[J]. 细胞与分子免疫学杂志, 2012, 28(1): 84-86, 90.) |
[1] | TAN Xiao, ZHU Qi, LIU Zhongqi, LI Jia, PENG Dingjin. Immunogenicity of Schistosoma japonicum Sj26gst mRNA vaccine candidate [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 546-551. |
[2] | LIU Huaman, Bikash Giri, FANG Chuantao, ZHENG Yameng, WU Huixin, ZENG Minhao, LI Shan, CHENG Guofeng. Identification of gender associated m6A modified circRNA in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 552-558. |
[3] | LAN Weiming, XU Hui, XU Yin, QIU Tingting, XIE Shuying, DENG Fenglin, HU Shaoliang, LIU Huan, GUO Jiagang, ZENG Xiaojun. Study on early warning of high risk environment of Schistosoma japonicum infection by quantitative real-time PCR [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 502-505. |
[4] | LI Wenjie, FENG Meng, CHENG Xunjia. Research advances of the immune regulation of helminths and their derived molecules on mite-induced asthma [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 131-136. |
[5] | MA Hui, CHONG Shigui, CHEN Gen, ZHANG Linghui, QIN Junmei, ZHAO Yumin. Research progress on the cellular signal pathways associated in alveolar echinococcosis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 223-227. |
[6] | WANG Xiao-ling, ZHANG Wei, YI Cun, CHEN Xiang-yu, YANG Wen-bin, XU Bin, HU Wei. The effect of SjGPR89 protein on the growth and development of Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 701-707. |
[7] | YAN Xiao-lan, WEN Li-yong, XIONG Yan-hong, ZHENG Bin, ZHANG Jian-feng, WANG Tian-ping, YU Li-ling, XU Guo-zhang, LIN Dan-dan, ZHOU Xiao-nong. Interpretation of Criteria for Detection of Antibody against Schistosoma japonicum—Enzyme-linked Immunosorbent Assay [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(6): 798-800. |
[8] | TANG Xian-shi, JI Wen-xiang, XIONG Chun-rong, ZHOU Yong-hua, XU Yong-liang, TONG De-sheng. Study on anxiety-like behavior of mice with late-stage infection of Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 622-628. |
[9] | LIANG Le, ZHANG Jing, SHEN Yu-juan, HU Yuan, CAO Jian-ping. Cyclic guanosine monophosphate-adenosine monophosphate promotes liver egg granuloma formation and fibrosis in mice infected with Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 441-445. |
[10] | PAN Xiao-wen, WU Yin-juan, HE Qing, YIN Ying-xuan, LI Xue-rong. Research advances on exosome and its functions to parasitic helminths [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 390-395. |
[11] | GAO Yuan, ZHANG Xiao-cheng, HU Yuan, CAO Jian-ping. Study on the inhibitory effect of natural killer cells on liver fibrosis of schistosomiasis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(2): 168-174. |
[12] | HONG Yang, LIN Jiao-jiao. Research progress on proteomics in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 725-730. |
[13] | HUANG Ai-long, ZHANG Bei, SHEN Han-yu, CHEN Guo, LI Jing, ZHU Dan-dan, DUAN Yi-nong. Expression and function of triggering receptor expressed on myeloid cells 1 in the liver of mice infected with Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 621-626. |
[14] | CHEN Yu-ying, WANG Xiao-ting, DAI Yang, CAO Jun. Progress on the intervention of inflammatory conditions by helminthes and their derived molecules [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(3): 380-385. |
[15] | ZHAO Cheng-si, QIN Min, TAN Ming-juan, MIAO Ting-ting, SHAO Tian-ye, LIU Xin-jian, WANG Yong. Effect of praziquantel on impaired renal function in mice with acute infection of Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(2): 200-209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||