[1] | World Health Organization. World malaria report 2022[R]. Geneva: WHO, 2023. | [2] | Santos JM, Lebrun M, Daher W, et al. Apicomplexan cytoskeleton and motors: key regulators in morphogenesis, cell division, transport and motility[J]. Int J Parasitol, 2009, 39(2): 153-162. | [3] | Bannister LH, Hopkins JM, Fowler RE, et al. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages[J]. Parasitol Today, 2000, 16(10): 427-433. | [4] | Mann T, Beckers C. Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii[J]. Mol Biochem Parasitol, 2001, 115(2): 257-268. | [5] | Raibaud A, Lupetti P, Paul RE, et al. Cryofracture electron microscopy of the ookinete pellicle of Plasmodium gallinaceum reveals the existence of novel pores in the alveolar membranes[J]. J Struct Biol, 2001, 135(1): 47-57. | [6] | Kono M, Herrmann S, Loughran NB, et al. Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite[J]. Mol Biol Evol, 2012, 29(9): 2113-2132. | [7] | Khater EI, Sinden RE, Dessens JT. A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites[J]. J Cell Biol, 2004, 167(3): 425-432. | [8] | Gould SB, Tham WH, Cowman AF, et al. Alveolins, a new family of cortical proteins that define the protist infraKingdom Alveolata[J]. Mol Biol Evol, 2008, 25(6): 1219-1230. | [9] | El-Haddad H, Przyborski JM, Kraft LG, et al. Characterization of TtALV2, an essential charged repeat motif protein of the Tetrahymena thermophila membrane skeleton[J]. Eukaryot Cell, 2013, 12(6): 932-940. | [10] | López-Barragán MJ, Lemieux J, Qui?ones M, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum[J]. BMC Genomics, 2011, 12: 587. | [11] | Gómez-Díaz E, Yerbanga RS, Lefèvre T, et al. Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae[J]. Sci Rep, 2017, 7: 40655. | [12] | Al-Khattaf FS, Tremp AZ, El-Houderi A, et al. The Plasmodium alveolin IMC1a is stabilised by its terminal cysteine motifs and facilitates sporozoite morphogenesis and infectivity in a dose-dependent manner[J]. Mol Biochem Parasitol, 2017, 211: 48-56. | [13] | Tremp AZ, Khater EI, Dessens JT. IMC1b is a putative membrane skeleton protein involved in cell shape, mechanical strength, motility, and infectivity of malaria ookinetes[J]. J Biol Chem, 2008, 283(41): 27604-27611. | [14] | Tremp AZ, Al-Khattaf FS, Dessens JT. Distinct temporal recruitment of Plasmodium alveolins to the subpellicular network[J]. Parasitol Res, 2014, 113(11): 4177-4188. | [15] | Tremp AZ, Al-Khattaf FS, Dessens JT. Palmitoylation of Plasmodium alveolins promotes cytoskeletal function[J]. Mol Biochem Parasitol, 2017, 213: 16-21. | [16] | Tremp AZ, Carter V, Saeed S, et al. Morphogenesis of Plasmodium zoites is uncoupled from tensile strength[J]. Mol Microbiol, 2013, 89(3): 552-564. | [17] | Coghlan MP, Tremp AZ, Saeed S, et al. Distinct functional contributions by the conserved domains of the malaria parasite alveolin IMC1h[J]. Front Cell Infect Microbiol, 2019, 9: 266. | [18] | Volkmann K, Pfander C, Burstroem C, et al. The alveolin IMC1h is required for normal ookinete and sporozoite motility behaviour and host colonisation in Plasmodium berghei[J]. PLoS One, 2012, 7(7): e41409. | [19] | Tremp AZ, Dessens JT. Malaria IMC1 membrane skeleton proteins operate autonomously and participate in motility independently of cell shape[J]. J Biol Chem, 2011, 286(7): 5383-5391. | [20] | Al-Khattaf FS, Tremp AZ, Dessens JT. Plasmodium alveolins possess distinct but structurally and functionally related multi-repeat domains[J]. Parasitol Res, 2015, 114(2): 631-639. | [21] | Kumar V, Behl A, Kapoor P, et al. Inner membrane complex 1l protein of Plasmodium falciparum links membrane lipids with cytoskeletal element ‘actin’ and its associated motor ‘myosin’[J]. Int J Biol Macromol, 2019, 126: 673-684. | [22] | Gao H, Yang ZK, Wang X, et al. ISP1-anchored polarization of GCβ/CDC50A complex initiates malaria ookinete gliding motility[J]. Curr Biol, 2018, 28(17): 2763-2776.e6. | [23] | Saini E, Zeeshan M, Brady D, et al. Photosensitized INA-Labelled protein 1 (PhIL1) is novel component of the inner membrane complex and is required for Plasmodium parasite development[J]. Sci Rep, 2017, 7(1): 15577. | [24] | Saini E, Sheokand PK, Sharma V, et al. Plasmodium falciparum PhIL1-associated complex plays an essential role in merozoite reorientation and invasion of host erythrocytes[J]. PLoS Pathog, 2021, 17(7): e1009750. | [25] | Wichers JS, Wunderlich J, Heincke D, et al. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum[J]. Cell Microbiol, 2021, 23(9): e13341. | [26] | Ye SY, Cheng YY, Li M, et al. An overview on the resistance of Plasmodium falciparum to primary anti-malarial drugs in China[J]. Chin J Parasitol Parasit Dis, 2020, 38(5): 631-636. (in Chinese) | | (叶升玉, 成依依, 李曼, 等. 我国恶性疟原虫主要药物抗性研究[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 631-636.) | [27] | Straimer J, Gn?dig NF, Witkowski B, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates[J]. Science, 2015, 347(6220): 428-431. | [28] | Birnbaum J, Scharf S, Schmidt S, et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites[J]. Science, 2020, 367(6473): 51-59. | [29] | Moran CJ, Dvorin JD. The basal complex protein PfMORN1 is not required for asexual replication of Plasmodium falciparum[J]. mSphere, 2021, 6(6): e0089521. | [30] | Engelberg K, Ivey FD, Lin A, et al. A MORN1-associated HAD phosphatase in the basal complex is essential for Toxoplasma gondii daughter budding[J]. Cell Microbiol, 2016, 18(8): 1153-1171. | [31] | Kono M, Heincke D, Wilcke L, et al. Pellicle formation in the malaria parasite[J]. J Cell Sci, 2016, 129(4): 673-680. | [32] | Rudlaff RM, Kraemer S, Streva VA, et al. An essential contractile ring protein controls cell division in Plasmodium falciparum[J]. Nat Commun, 2019, 10(1): 2181. | [33] | Clements RL, Morano AA, Navarro FM, et al. Identification of basal complex protein that is essential for maturation of transmission-stage malaria parasites[J]. Proc Natl Acad Sci USA, 2022, 119(34): e2204167119. | [34] | Baum J, Richard D, Healer J, et al. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites[J]. J Biol Chem, 2006, 281(8): 5197-5208. | [35] | Webb SE, Fowler RE, O’Shaughnessy C, et al. Contractile protein system in the asexual stages of the malaria parasite Plasmodium falciparum[J]. Parasitology, 1996, 112(Pt 5): 451-457. | [36] | Bergman LW, Kaiser K, Fujioka H, et al. Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites[J]. J Cell Sci, 2003, 116(Pt 1): 39-49. | [37] | Green JL, Wall RJ, Vahokoski J, et al. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility[J]. J Biol Chem, 2017, 292(43): 17857-17875. | [38] | Ridzuan MA, Moon RW, Knuepfer E, et al. Subcellular location, phosphorylation and assembly into the motor complex of GAP45 during Plasmodium falciparum schizont development[J]. PLoS One, 2012, 7(3): e33845. | [39] | Yeoman JA, Hanssen E, Maier AG, et al. Tracking glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum[J]. Eukaryot Cell, 2011, 10(4): 556-564. | [40] | He L, Qiu Y, Pang GP, et al. Plasmodium falciparum GAP40 plays an essential role in merozoite invasion and gametocytogenesis[J]. Microbiol Spectr, 2023, 11(3): e0143423. | [41] | He L, Zhu LY, Li SQ, et al. Inhibitive effects on glideosome-associated protein 40 of Plasmodium berghei on its ookinetes development[J]. Acta Parasitol Med Entomol Sin, 2021, 28(4): 207-213, 236. (in Chinese) | | (何璐, 朱俐颖, 李思琦, 等. 抗伯氏疟原虫GAP40蛋白免疫血清对动合子发育抑制作用的研究[J]. 寄生虫与医学昆虫学报, 2021, 28(4): 207-213, 236.) | [42] | Harding CR, Egarter S, Gow M, et al. Gliding associated proteins play essential roles during the formation of the inner membrane complex of Toxoplasma gondii[J]. PLoS Pathog, 2016, 12(2): e1005403. | [43] | Perrin AJ, Collins CR, Russell MRG, et al. The actinomyosin motor drives malaria parasite red blood cell invasion but not egress[J]. mBio, 2018, 9(4): e00905-e00918. | [44] | Robert-Paganin J, Robblee JP, Auguin D, et al. Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism[J]. Nat Commun, 2019, 10(1): 3286. | [45] | Pazicky S, Dhamotharan K, Kaszuba K, et al. Structural role of essential light chains in the apicomplexan glideosome[J]. Commun Biol, 2020, 3(1): 568. | [46] | Moussaoui D, Robblee JP, Auguin D, et al. Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets[J]. Elife, 2020, 9: e60581. | [47] | Saunders CN, Cota E, Baum J, et al. Peptide probes for Plasmodium falciparum MyoA tail interacting protein (MTIP): exploring the druggability of the malaria parasite motor complex[J]. ACS Chem Biol, 2020, 15(6): 1313-1320. | [48] | Rompikuntal PK, Kent RS, Foe IT, et al. Blocking palmitoylation of Toxoplasma gondii myosin light chain 1 disrupts glideosome composition but has little impact on parasite motility[J]. mSphere, 2021, 6(3): e00823-e00820. | [49] | Boucher LE, Hopp CS, Muthinja JM, et al. Discovery of Plasmodium (M) TRAP-aldolase interaction stabilizers interfering with sporozoite motility and invasion[J]. ACS Infect Dis, 2018, 4(4): 620-634. | [50] | Kafsack BF, Rovira-Graells N, Clark TG, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites[J]. Nature, 2014, 507(7491): 248-252. | [51] | Sinha A, Hughes KR, Modrzynska KK, et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium[J]. Nature, 2014, 507(7491): 253-257. | [52] | Xu SJ, Chen SB, Chen JH. Research progress on transcription regulation of rif gene in Plasmodium falciparum[J]. Chin J Parasitol Parasit Dis, 2023, 41(3): 374-379. (in Chinese) | | (徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379.) | [53] | Zheng YX, Zhang YW, Jiang N. Research advance on ApiAP2 family of Plasmodium falciparum[J]. Acta Vet Zootechnica Sin, 2022, 53(5): 1354-1363. (in Chinese) | | (郑雨昕, 张义伟, 姜宁. 恶性疟原虫ApiAP2蛋白质家族研究进展[J]. 畜牧兽医学报, 2022, 53(5): 1354-1363.) | [54] | Campelo Morillo RA, Tong XR, Xie W, et al. The transcriptional regulator HDP1 controls expansion of the inner membrane complex during early sexual differentiation of malaria parasites[J]. Nat Microbiol, 2022, 7(2): 289-299. | [55] | Furuya T, Mu JB, Hayton K, et al. Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis[J]. Proc Natl Acad Sci USA, 2005, 102(46): 16813-16818. | [56] | Thomas DC, Ahmed A, Gilberger TW, et al. Regulation of Plasmodium falciparum glideosome associated protein 45 (PfGAP45) phosphorylation[J]. PLoS One, 2012, 7(4): e35855. | [57] | Ripp J, Smyrnakou X, Neuhoff MT, et al. Phosphorylation of myosin A regulates gliding motility and is essential for Plasmodium transmission[J]. EMBO Rep, 2022, 23(7): e54857. | [58] | Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic[J]. Nat Rev Mol Cell Biol, 2007, 8(1): 74-84. | [59] | Resh MD. Palmitoylation of ligands, receptors, and intracellular signaling molecules[J]. Sci STKE, 2006, 2006(359): e3592006re14. | [60] | Tay CL, Jones ML, Hodson N, et al. Study of Plasmodium falciparum DHHC palmitoyl transferases identifies a role for PfDHHC9 in gametocytogenesis[J]. Cell Microbiol, 2016, 18(11): 1596-1610. | [61] | Poulin B, Patzewitz EM, Brady D, et al. Unique api complexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite[J]. Biol Open, 2013, 2(11): 1160-1170. | [62] | Wang X, Qian PG, Cui HT, et al. A protein palmitoylation cascade regulates microtubule cytoskeleton integrity in Plasmodium[J]. EMBO J, 2021, 40(17): e109070. | [63] | Santos JM, Kehrer J, Franke-Fayard B, et al. The Plasmodium palmitoyl-S-acyl-transferase DHHC2 is essential for ookinete morphogenesis and malaria transmission[J]. Sci Rep, 2015, 5: 16034. | [64] | Qian PG, Wang X, Zhong CQ, et al. Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite[J]. eLife, 2022, 11: e77447. | [65] | Rees-Channer RR, Martin SR, Green JL, et al. Dual acylation of the 45 kDa gliding-associated protein (GAP45) in Plasmodium falciparum merozoites[J]. Mol Biochem Parasitol, 2006, 149(1): 113-116. | [66] | Siddiqui MA, Singh S, Malhotra P, et al. Protein S-palmitoylation is responsive to external signals and plays a regulatory role in microneme secretion in Plasmodium falciparum merozoites[J]. ACS Infect Dis, 2020, 6(3): 379-392. | [67] | Harding CR, Frischknecht F. The riveting cellular structures of apicomplexan parasites[J]. Trends Parasitol, 2020, 36(12): 979-991. | [68] | Ferreira JL, Heincke D, Wichers JS, et al. The dynamic roles of the inner membrane complex in the multiple stages of the malaria parasite[J]. Front Cell Infect Microbiol, 2020, 10: 611801. |
|