CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2018, Vol. 36 ›› Issue (6): 643-647.
• Orginal Article • Previous Articles Next Articles
Wen-qi ZHENG1, Xiu-lan SU2,*()
Received:
2018-07-25
Online:
2018-12-30
Published:
2019-01-08
Contact:
Xiu-lan SU
E-mail:xlsu@hotmail.com
Supported by:
抗菌肽 | 氨基酸序列 | 来源 | 作用阶段与特点 |
---|---|---|---|
CA(1~13)M(1~13) | KWKLFKKIEKVGQGIGA- VLKVLTTGL | 天蚕素与蜂毒肽混合 | 杀伤红细胞内期的恶性疟原虫[ |
Dermaseptin DS3 | X-ALWKNMLKGIGKLAG- KAALGAVKKLVGAES | 索瓦叶泡蛙 Phyllomedusa sauvagii Dermaseptin 衍生物 | 杀伤红细胞内期的恶性疟原虫[ |
Dermaseptin DS4 | X-ALWMTLLKKVLKAAA- KAALNAVLVGANA | 索瓦叶泡蛙 Phyllomedusa sauvagii Dermaseptin 衍生物 | 杀伤红细胞内期的恶性疟原虫[ |
Dermaseptin K4K20-S4 | ALWKTLLKKVLKAAAK- AALKAVLVGANA | 索瓦叶泡蛙 Phyllomedusa sauvagii Dermaseptin S4 衍生物 | 杀伤红细胞内期的恶性疟原虫[ |
Dermaseptin K4-S4 | ALWMTLLKKVLKA-NH2 | 索瓦叶泡蛙 Phyllomedusa sauvagii dermaseptin S4 derivative | 杀伤红细胞内期的恶性疟原虫[ |
Dermaseptin NC7-P | H2N-(CH2)6-CO-ALWKTLL- KKVLKA-NH2 | 索瓦叶泡蛙 Phyllomedusa sauvagii dermaseptin K4-S4(1~13)a 衍生物 | 杀伤红细胞内期的恶性疟原虫[ |
SB-37 | MPKWKVFKKIEKVGRNIRN- GIVKAGPAIAVLGEAKALG | 合成的天蚕素B衍生物 | 杀伤红细胞内期的恶性疟原虫[ |
Shiva-1 | MPRWRLFRRIDRVGKQIKQ- GILRAGPAIALVGDARAVG | 合成的天蚕素B衍生物 | 杀伤红细胞内期的恶性疟原虫[ |
DefMT2 | GYFCPYNGYCDHHCRKKLRWRGGYCGGRWKLTCICVRG | 蓖子硬蜱 Ixodes ricinus | 杀伤红细胞内期的恶性疟原虫和夏氏疟原虫[ |
DefMT5 | GFFCPYNGYCDRHCRKKLRRRGGYCGGRWKLTCICIMN | 蓖子硬蜱 Ixodes ricinus | 杀伤红细胞内期的恶性疟原虫和夏氏疟原虫[ |
抗菌肽名称 | 氨基酸序列 | 来源 | 作用阶段与特点 |
---|---|---|---|
Drosomycin | DCLSGRYKGPCAVWDNETCRRVCKEEGRSSGHCSPSLKCWCEGC | 黑腹果蝇 | 抑制伯氏疟原虫配子体的形成[ |
Anoplin | GLLKRIKTLLNH2 | 黄蜂 | 抑制伯氏疟原虫动合子的形成[ |
天蚕素B | KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKALG | 刻克罗普斯蚕蛾 | 抑制疟原虫卵囊的形成[ |
防御素A | ATCDLLSGFGVGDSACAAHCIARGNRGGYCNSKKVCVCRN | 埃及伊蚊 | 抑制鸡疟原虫卵囊的形成[ |
Gambicin | MVFAYAPTXARXKSIGARYXGYGYLNRK- GVSXDGQTTINSXEDXKRKFGRXSDGFIT | 冈比亚按蚊 | 抑制伯氏疟原虫动合子的形成[ |
蜂毒肽 | X-NH-GIGAVLKVLTTGLPALISWIKRKR- QQCONH2 | 蜜蜂 | 抑制伯氏疟原虫动合子的形成[ |
Mastoparan X | INLKALAALAKKIL | 黄蜂 | 抑制伯氏疟原虫动合子的形成[ |
蛙皮素2 | GIGKFLHSAKKFGKAFVGEIMNS | 非洲爪蟾 | 抑制疟原虫动合子的形成[ |
TP10 (二聚体) | AGYLLGKINLKALAALAKKIL | 黄蜂 | 抑制伯氏疟原虫动合子的形成,抑制恶性疟原虫卵囊的形成[ |
Vida1 | KWKKFKKGIGKLFV | 合成的天蚕素B/蜂毒肽衍生物 | 抑制伯氏疟原虫动合子的形成[ |
Vida2 | KWPKFKKGIPWLFV | 合成的天蚕素B/蜂毒肽衍生物 | 抑制伯氏疟原虫动合子的形成[ |
Vida3 | KWPKFRRGIPFLFV | 合成的天蚕素B/蜂毒肽衍生物 | 抑制伯氏疟原虫动合子的形成[ |
Shiva-1 | MPRWRLFRRIDRVGKQIKQGILRAGPAIALVGDARAVG | 合成的天蚕素B 衍生物 | 抑制伯氏疟原虫动合子与早期子孢子的形成[ |
Scorpine | GWINEEKIQKKIDERMGNTVLGGMAK- AIVHKMAKNEFQCMANMDMLGNCEK- HCQTSGEKGYCHGTKCKCGTPLSY | 非洲帝王蝎 | 抑制伯氏疟原虫动合子的形成[ |
[1] | World Health Organization.World Malaria Report 2017[R]. Geneva: WHO, 2017. |
[2] | World Health Organization.Global technical strategy for malaria 2016-2030[R]. Geneva: WHO, 2015. |
[3] | 雷正龙, 王立英. 全国重点寄生虫病防治形势与主要任务[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(1): 1-5. |
[4] | 张丽, 丰俊, 夏志贵. 2013年全国疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2014, 32(6): 407-413. |
[5] | 丰俊, 张丽, 周水森, 等. 全国2005-2015年疟疾疫情分析[J]. 中国热带医学, 2017, 17(4): 325-334. |
[6] | 张丽, 丰俊, 张少森, 等. 2017 年全国消除疟疾进展及疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3): 201-209. |
[7] | Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016, 167(3): 610-624. |
[8] | Sinha S, Medhi B, Sehgal R.Challenges of drug-resistant malaria[J]. Parasite, 2014, 21: 61. |
[9] | Draper SJ, Sack BK, King CR, et al. Malaria vaccines: recent advances and new horizons[J]. Cell Host Microbe, 2018, 24(1): 43-56. |
[10] | Long CA, Zavala F.Malaria vaccines and human immune responses[J]. Curr Opin Microbiol, 2016, 32: 96-102. |
[11] | Boman HG.Antibacterial peptides: key components needed in immunity[J]. Cell, 1991, 65(2): 205-207. |
[12] | Hultmark D, Steiner H, Rasmuson T, et al. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia[J]. Eur J Biochem, 1980, 106(1): 7-16. |
[13] | Steiner H, Hultmark D, Engström A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity[J]. Nature, 1981, 292(5820): 246-248. |
[14] | Hancock RE.Peptide antibiotics[J]. Lancet, 1997, 349(9049): 418-422. |
[15] | Jenssen H, Hamill P, Hancock RE.Peptide antimicrobial agents[J]. Clin Microbiol Rev, 2006, 19(3): 491-511. |
[16] | Karstad R, Isaksen G, Wynendaele E, et al. Targeting the S1 and S3 subsite of trypsin with unnatural cationic amino acids generates antimicrobial peptides with potential for oral administration[J]. J Med Chem, 2012, 55(14): 6294-6305. |
[17] | Gwadz RW, Kaslow D, Lee JY, et al. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes[J]. Infect Immun, 1989, 57(9): 2628-2633. |
[18] | Vale N, Aguiar L, Gomes P.Antimicrobial peptides: a new class of antimalarial drugs[J]. Front Pharmacol, 2014, 5: 275. |
[19] | Zairi A, Tangy F, Bouassida K, et al. Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review[J]. J Biomed Biotechnol, 2009, 2009: 452567. |
[20] | Ghosh JK, Shaool D, Guillaud P, et al. Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis[J]. J Biol Chem, 1997, 272(50): 31609-31616. |
[21] | Krugliak M, Feder R, Zolotarev VY, et al. Antimalarial activities of dermaseptin S4 derivatives[J]. Antimicrob Agents Chemother, 2000, 44(9): 2442-2451. |
[22] | Efron L, Dagan A, Gaidukov L, et al. Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in culture[J]. J Biol Chem, 2002, 277(27): 24067-24072. |
[23] | Jaynes JM, Burton CA, Barr SB, et al. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi[J]. FASEB J, 1988, 2(13): 2878-2883. |
[24] | Cabezas-Cruz A, Tonk M, Bouchut A, et al. Antiplasmodial activity is an ancient and conserved feature of tick defensins[J]. Front Microbiol, 2016, 7: 1682. |
[25] | Couto J, Tonk M, Ferrolho J, et al. Antiplasmodial activity of tick defensins in a mouse model of malaria[J]. Ticks Tick Borne Dis, 2018, 9(4): 844-849. |
[26] | Carter V, Hurd H.Choosing anti-Plasmodium molecules for genetically modifying mosquitoes: focus on peptides[J]. Trends Parasitol, 2010, 26(12): 582-590. |
[27] | Sinden RE, Dawes EJ, Alavi Y, et al. Progression of Plasmodium berghei through Anopheles stephensi is density-dependent[J]. PLoS Pathog, 2007, 3(12): e195. |
[28] | Tian C, Gao B, Rodriguez Mdel C, et al. Gene expression, antiparasitic activity, and functional evolution of the drosomycin family[J]. Mol Immunol, 2008, 45(15): 3909-3916. |
[29] | Carter V, Underhill A, Baber I, et al. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium[J]. PLoS Pathog, 2013, 9(11): e1003790. |
[30] | Fredenhagen A, Fendrich G, Märki F, et al. Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A2. Structural revision of duramycin and cinnamycin[J]. J Antibiot, 1990, 43(11): 1403-1412. |
[31] | Asthana N, Yadav SP, Ghosh JK.Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity[J]. J Biol Chem, 2004, 279(53): 55042-55050. |
[32] | Arrighi RB, Ebikeme C, Jiang Y, et al. Cell-penetrating peptide TP10 shows broad-spectrum activity against both Plasmodium falciparum and Trypanosoma brucei brucei[J]. Antimicrob Agents Chemother, 2008, 52(9): 3414-3417. |
[33] | Arrighi RB, Nakamura C, Miyake J, et al. Design and activity of antimicrobial peptides against sporogonic-stage parasites causing murine malarias[J]. Antimicrob Agents Chemother, 2002, 46(7): 2104-2110. |
[34] | Konno K, Hisada M, Fontana R, et al. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis[J]. Biochim Biophys Acta, 2001, 1550(1): 70-80. |
[35] | Longland CL, Mezna M, Michelangeli F.The mechanism of inhibition of the Ca2+-ATPase by mastoparan. Mastoparan abolishes cooperative Ca2+ binding[J]. J Biol Chem, 1999, 274(21): 14799-14805. |
[36] | Vizioli J, Bulet P, Hoffmann JA, et al. Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2001, 98(22): 12630-12635. |
[37] | Rodriguez MC, Zamudio F, Torres JA, et al. Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei[J]. Exp Parasitol, 1995, 80(4): 596-604. |
[38] | Conde R, Zamudio FZ, Rodríguez MH, et al. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom[J]. FEBS Lett, 2000, 471(2-3): 165-168. |
[39] | Biswaro LS, da Costa Sousa MG, Rezende TMB, et al. Antimicrobial peptides and nanotechnology, recent advances and challenges[J]. Front Microbiol, 2018, 9: 855. |
[40] | Hsiao LL, Howard RJ, Aikawa M, et al. Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum[J]. Biochem J, 1991, 274(Pt 1): 121-132. |
[41] | Gelhaus C, Jacobs T, Andrä J, et al. The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum[J]. Antimicrob Agents Chemother, 2008, 52(5): 1713-1720. |
[42] | Park Y, Hahm KS.Antimicrobial peptides(AMPs): peptide structure and mode of action[J]. J Biochem Mol Biol, 2005, 38(5): 507-516. |
[43] | Harms JM, Wilson DN, Schluenzen F, et al. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin[J]. Mol Cell, 2008, 30(1): 26-38. |
[44] | Azevedo R, Markovic M, Machado M, et al. Bioluminescence method for in vitro screening of Plasmodium transmission-blocking compounds[J]. Antimicrob Agents Chemother, 2017, 61(6): e02699-16. |
[45] | Aminake MN, Schoof S, Sologub L, et al. Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast[J]. Antimicrob Agents Chemother, 2011, 55(4): 1338-1348. |
[1] | WANG Rong, XU Jie, ZHU Xiaotong. Research advances on transmission-blocking vaccines targeting Plasmodium sexual stage [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(3): 399-406. |
[2] | TAN Nie, JIAO Shiming, DING Yan, ZHU Chengyu, XU Wenyue. Effect of local complement activation in hepatocytes on the development of Plasmodium in the infrared phase [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(2): 169-176. |
[3] | HAN Zhuxi, ZHU Xiaotong. Research progress on Plasmodium membrane protein complexes [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(1): 111-116. |
[4] | MA Yue, ZHAO Baocai, ZHOU Jiali, HU Junhao, ZHAO Hongxi. Research progress on the regulation of miRNA in the infection of apicomplexan parasites [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(6): 749-755. |
[5] | LIANG Kejia, LIU Cong, LI Yanlin, LI Xiaoge, LIU Yan, LI Zhenkui. Research advances on transcriptional regulation in plasmodium sexual stages [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 619-624. |
[6] | SUN Jun. The biological significance of malarial hemozoin’s formation [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(2): 209-212. |
[7] | JIANG Tiange, ZENG Wenbo, LI Zhongqiu, ZHANG Yi. Research advances in the regulatory role of non-coding RNA in leishmaniasis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 92-97. |
[8] | GE Jie-yun, LIU Lei, SUN Yi-fan, CHENG Yang. Advances in research on the vacuolar membrane function and the associated proteins of plasmodium parasitophorous vacuole [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 402-410. |
[9] | LIU Chuang, SI Wen-wen, ZHANG Yin, LIU Rong, LIU Yi, OUYANG Rui-zhuo, SUN Jun. A discussion on the broad-spectrum and potential mechanism of artemisinin and its derivatives [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 114-120. |
[10] | YIN Chang-zhu, LI Di, CAI Juan, XU Hong-ling, WANG Ling-jun, ZHENG Ming-hui, LIU Hui. Role of Toll-like receptor 7 in anti-infective immunity [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(1): 99-103. |
[11] | HONG Yang, LIN Jiao-jiao. Research progress on proteomics in Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 725-730. |
[12] | LU Fei, ZHUO Xun-hui, LU Shao-hong. Research progress on the interaction between host cell autophagy and apicomplexa protozoa infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 826-831. |
[13] | XU Feng-yan, YANG Yong, GAO Xin, LIU Xiao-lei, WANG Yang, LIU Ming-yuan, ZHANG Yuan-yuan, BAI Xue. Advances in research on parasite proteomics of extracellular vesicles [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(4): 526-532. |
[14] | LI Mei, TU Hong, XIA Zhi-gui, WANG Zhen-yu, ZHOU He-jun. Thermal stability of diagnostic targets Plasmodium falciparum histidine rich protein Ⅱ and Plasmodium lactate dehydrogenase in rapid detection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(2): 245-248. |
[15] | LIU Hong, LIU Yao-bao, CAO Jun. Research advance and application of whole-genome sequencing of Plasmodium [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(2): 265-270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||