[1] | Saijuntha W, Sithithaworn P, Wangboon C, et al. Liver flukes: Clonorchis and Opisthorchis[J]. Adv Exp Med Biol, 2024, 1454: 239-284. | [2] | World Health Organization. Working to overcome the global impact of neglected tropical diseases: First WHO report on neglected tropical diseases[R]. Geneva: World Health Organization. 2010: 1-10. | [3] | Bouvard V, Baan R, Straif K, et al. A review of human carcinogens: Part B: Biological agents[J]. Lancet Oncol, 2009, 10(4): 321-322. | [4] | Na BK, Pak JH, Hong SJ. Clonorchis sinensis and clonorchiasis[J]. Acta Trop, 2020, 203: 105309. | [5] | Lee JM, Lim HS, Hong ST. Hypersensitive reaction to praziquantel in a clonorchiasis patient[J]. Korean J Parasitol, 2011, 49(3): 273-275. | [6] | Botros SS, Bennett JL. Praziquantel resistance[J]. Expert Opin Drug Discov, 2007, 2(sup1): S35.S40. | [7] | Tang ZL, Huang Y, Yu XB. Current status and perspectives of Clonorchis sinensis and clonorchiasis: Epidemiology, pathogenesis, omics, prevention and control[J]. Infect Dis Poverty, 2016, 5: 71. | [8] | Sivanand A, Talati D, Kalariya Y, et al. Associations of liver fluke infection and cholangiocarcinoma: A scoping review[J]. Cureus, 2023, 15(10): e46400. | [9] | Prueksapanich P, Piyachaturawat P, Aumpansub P, et al. Liver fluke-associated biliary tract cancer[J]. Gut Liver, 2018, 12(3): 236-245. | [10] | Zheng SH, Zhu Y, Zhao ZJ, et al. Liver fluke infection and cho-langiocarcinoma: A review[J]. Parasitol Res, 2017, 116(1): 11-19. | [11] | Khuroo MS, Khuroo NS, Khuroo MS. Biliary ascariasis in the etiology of recurrent pyogenic cholangitis in an endemic area[J]. Int J Hepatobiliary Pancreat Dis, 2015, 5: 22. | [12] | 黄嘉殷, 方小衡. 华支睾吸虫感染与肝胆疾病的关系[J]. 热带医学杂志, 2010, 10(2): 226-228. | | Huang JY, Fang XH. Relationship between Clonorchis sinensis infection and hepatobiliary diseases[J]. J Trop Med, 2010, 10(2): 226-228. (in Chinese) | [13] | Won J, Cho Y, Lee D, et al. Clonorchis sinensis excretory-secretory products increase malignant characteristics of cholangiocarcinoma cells in three-dimensional co-culture with biliary ductal plates[J]. PLoS Pathog, 2019, 15(5): e1007818. | [14] | Shi YL, Yu K, Liang AL, et al. Identification and analysis of the tegument protein and excretory-secretory products of the carcinogenic liver fluke Clonorchis sinensis[J]. Front Microbiol, 2020, 11: 555730. | [15] | Mulvenna J, Sripa B, Brindley PJ, et al. The secreted and surface proteomes of the adult stage of the carcinogenic human liver fluke Opisthorchis viverrini[J]. Proteomics, 2010, 10(5): 1063-1078. | [16] | Bian M, Li S, Zhou HZ, et al. ASPSCR-1 and Sirt-5 alleviate Clonorchis liver fluke rCsNOSIP-induced oxidative stress, proliferation, and migration in cholangiocarcinoma cells[J]. PLoS Negl Trop Dis, 2023, 17(11): e0011727. | [17] | Kim JW, Yi J, Park J, et al. Transcriptomic profiling of three-dimensional cholangiocyte spheroids long term exposed to repetitive Clonorchis sinensis excretory-secretory products[J]. Parasit Vectors, 2021, 14(1): 213. | [18] | Wang YR, Zhang X, Wang XC, et al. Clonorchis sinensis aggravates biliary fibrosis through promoting IL-6 production via toll-like receptor 2-mediated AKT and p38 signal pathways[J]. PLoS Negl Trop Dis, 2023, 17(1): e0011062. | [19] | Kang JM, Yoo WG, Lê HG, et al. Clonorchis sinensis MF6p/HDM (CsMF6p/HDM) induces pro-inflammatory immune response in RAW 264.7 macrophage cells via NF-κB-dependent MAPK pathways[J]. Parasit Vectors, 2020, 13(1): 20. | [20] | Qian MB, Utzinger J, Keiser J, et al. Clonorchiasis[J]. Lancet, 2016, 387(10020): 800-810. | [21] | Kim J, Sohn WM, Bae YA. Prostaglandin synthase activity of sigma- and mu-class glutathione transferases in a parasitic trematode, Clonorchis sinensis[J]. Parasites Hosts Dis, 2024, 62(2): 205-216. | [22] | Lv XL, Chen WJ, Wang XY, et al. Molecular characterization and expression of a cysteine protease from Clonorchis sinensis and its application for serodiagnosis of clonorchiasis[J]. Parasitol Res, 2012, 110(6): 2211-2219. | [23] | Xie XY, Wu ZS, Wu YH, et al. Cysteine protease of Clonorchis sinensis alleviates DSS-induced colitis in mice[J]. PLoS Negl Trop Dis, 2022, 16(9): e0010774. | [24] | Ren MY, He L, Huang Y, et al. Molecular characterization of Clonorchis sinensis secretory myoglobin: Delineating its role in anti-oxidative survival[J]. Parasit Vectors, 2014, 7: 250. | [25] | Kim SH, Yang D, Bae YA. Hypoxic and nitrosative stress conditions modulate expression of myoglobin genes in a carcinogenic hepatobiliary trematode, Clonorchis sinensis[J]. PLoS Negl Trop Dis, 2021, 15(9): e0009811. | [26] | Nam JH, Moon JH, Kim IK, et al. Free radicals enzymatically triggered by Clonorchis sinensis excretory-secretory products cause NF-κB-mediated inflammation in human cholangiocarcinoma cells[J]. Int J Parasitol, 2012, 42(1): 103-113. | [27] | Zheng B, Gao ZY, Liang LM, et al. Autophagy of hepatic stellate cell induced by Clonorchis sinensis[J]. Mol Biol Rep, 2022, 49(3): 1895-1902. | [28] | Yan C, Zhou QY, Wu J, et al. Csi-let-7a-5p delivered by extracellular vesicles from a liver fluke activates M1-like macrophages and exacerbates biliary injuries[J]. Proc Natl Acad Sci USA, 2021, 118(46): e2102206118. | [29] | Wang YR, Wang XC, Zhang N, et al. Extracellular vesicles of Clonorchis sinensis promote IL-6 and TNF-α secretion via the Toll-like receptor 9-mediated ERK pathway in biliary epithelial cells[J]. Dev Comp Immunol, 2023, 139: 104555. | [30] | Zhang XL, Duan SS, Li X, et al. Differences in the secretory exosomes of Clonorchis sinensis adults at different incubation times[J]. Acta Trop, 2022, 234: 106604. | [31] | Wen LJ, Li M, Yin JG. Pten deficiency induced by extracellular vesicle miRNAs from Clonorchis sinensis potentiates cholangiocarcinoma development by inhibiting ferroptosis[J]. Int J Mol Sci, 2024, 25(19): 10350. | [32] | Hambrook JR, Gharamah AA, Pila EA, et al. Biomphalaria glabrata granulin increases resistance to Schistosoma mansoni infection in several Biomphalaria species and induces the production of reactive oxygen species by haemocytes[J]. Genes (Basel), 2019, 11(1): 38. | [33] | Pan Y, Cheung ST, Tong JHM, et al. Granulin epithelin precursor promotes colorectal carcinogenesis by activating MARK/ERK pathway[J]. J Transl Med, 2018, 16(1): 150. | [34] | Wang CQ, Lei HL, Tian YL, et al. Clonorchis sinensis granulin: Identification, immunolocalization, and function in promoting the metastasis of cholangiocarcinoma and hepatocellular carcinoma[J]. Parasit Vectors, 2017, 10(1): 262. | [35] | Wang CQ, He Q, Yin YX, et al. Clonorchis sinensis granulin promotes malignant transformation of hepatocyte through EGFR-mediated RAS/MAPK/ERK and PI3K/Akt signaling pathways[J]. Front Cell Infect Microbiol, 2021, 11: 734750. | [36] | He Q, Pan XW, Yin YX, et al. Clonorchis sinensis granulin promotes malignant transformation of human intrahepatic biliary epithelial cells through interaction with M2 macrophages via regulation of STAT3 phosphorylation and the MEK/ERK pathway[J]. Parasit Vectors, 2023, 16(1): 139. | [37] | 蔡连顺, 肖景莹, 辛华, 等. 华支睾吸虫病患者细胞因子水平与肝功能关系的研究[J]. 中国寄生虫学与寄生虫病杂志, 2004, 22(1): 54-56. | | Cai LS, Xiao JY, Xin H, et al. Studies on the relationship between the level of cytokine and liver function in patients with clonorchiasis sinensis[J]. Chin J Parasitol Parasit Dis, 2004, 22(1): 54-56. (in Chinese) | [38] | Yan C, Li XY, Li B, et al. Expression of Toll-like receptor (TLR) 2 and TLR4 in the livers of mice infected by Clonorchis sinensis[J]. J Infect Dev Ctries, 2015, 9(10): 1147-1155. | [39] | Kim EM, Kwak YS, Yi MH, et al. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo[J]. PLoS Negl Trop Dis, 2017, 11(5): e0005614. | [40] | Wu YH, Deng XL, Wu ZS, et al. Multilayer omics reveals the molecular mechanism of early infection of Clonorchis sinensis juvenile[J]. Parasit Vectors, 2023, 16(1): 285. | [41] | Zhan TZ, Wu YH, Deng XL, et al. Multi-omics approaches reveal the molecular mechanisms underlying the interaction between Clonorchis sinensis and mouse liver[J]. Front Cell Infect Microbiol, 2023, 13: 1286977. | [42] | Apte RN, Voronov E. Interleukin-1: A major pleiotropic cytokine in tumor-host interactions[J]. Semin Cancer Biol, 2002, 12(4): 277-290. | [43] | Zhao L, Shi MC, Zhou LN, et al. Clonorchis sinensis adult-derived proteins elicit Th2 immune responses by regulating dendritic cells via mannose receptor[J]. PLoS Negl Trop Dis, 2018, 12(3): e0006251. | [44] | 赵磊, 李佳, 莫刚, 等. 华支睾吸虫感染对小鼠肝纤维化和免疫调节功能的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 760-765. | | Zhao L, Li J, Mo G, et al. Effect of Clonorchis sinensis infection on hepatic fibrosis and immune regulation in mice[J]. Chin J Parasitol Parasit Dis, 2023, 41(6): 760-765. (in Chinese) | [45] | Wang N, Bai X, Jin XM, et al. The dynamics of select cellular responses and cytokine expression profiles in mice infected with juvenile Clonorchis sinensis[J]. Acta Trop, 2021, 217: 105852. | [46] | 王佳文, 刘雪薇, 王雪, 等. 华支睾吸虫感染诱导小鼠肝巨噬细胞极化的动态变化研究[J]. 中国农业大学学报, 2025, 30(2): 115-125. | | Wang JW, Liu XW, Wang X, et al. Dynamic changes of liver macrophage polarization induced by Clonorchis sinensis infection in mice[J]. J China Agric Univ, 2025, 30(2): 115-125. (in Chinese) | [47] | Quinteros SL, O’Brien B, Donnelly S. Exploring the role of macrophages in determining the pathogenesis of liver fluke infection[J]. Parasitology, 2022, 149(10): 1364-1373. | [48] | Hua H, Du Y, Ma R, et al. The regulatory roles of toll-like receptor 4 in secretions of type 1/type 2 relative cytokines by splenocytes and dendritic cells exposed to Clonorchis sinensis excretory/secretory products[J]. Inflammation, 2018, 41(1): 213-220. | [49] | Qiao T, Ma RH, Luo ZL, et al. Clonorcis sinensis eggs are associated with calcium carbonate gallbladder stones[J]. Acta Trop, 2014, 138: 28-37. | [50] | Ma RH, Wang XF, Li Q, et al. A systematic study on 33 gallbladder stones resembling adult Clonorchis sinensis worms[J]. J Helminthol, 2022, 96: e90. | [51] | Chen XQ, He JX, Tan C, et al. Clonorchis sinensis infection in a non-endemic area: A case report[J]. Exp Ther Med, 2024, 27(3): 106. | [52] | Wang YR, Gong PT, Zhang XC, et al. TLR3 activation by Clonorchis sinensis infection alleviates the fluke-induced liver fibrosis[J]. PLoS Negl Trop Dis, 2023, 17(5): e0011325. | [53] | Zhou LN, Shi MC, Zhao L, et al. Clonorchis sinensis lysophospholipase A upregulates IL-25 expression in macrophages as a potential pathway to liver fibrosis[J]. Parasit Vectors, 2017, 10(1): 295. | [54] | 赵磊, 彭小红. 华支睾吸虫致肝胆管纤维化的免疫学机制研究进展[J]. 中国病原生物学杂志, 2023, 18(5): 609-613. | | Zhao L, Peng XH. Advances in the immunologic mechanism of hepatobiliary fibrosis induced by Clonorchis sinensis[J]. J Pathog Biol, 2023, 18(5): 609-613. (in Chinese) | [55] | Yi J, Jeong JH, Won J, et al. The crosstalk between cholangiocytes and hepatic stellate cells promotes the progression of epithelial-mesenchymal transition and periductal fibrosis during Clonorchis sinensis infection[J]. Parasit Vectors, 2024, 17(1): 151. | [56] | Vij M, Puri Y, Rammohan A, et al. Pathological, molecular, and clinical characteristics of cholangiocarcinoma: A comprehensive review[J]. World J Gastrointest Oncol, 2022, 14(3): 607-627. | [57] | Hata T, Hiromichi I. Biliary parasitic diseases associated with hepatobiliary carcinoma[J]. Visc Med, 2023, 39(3/4): 71-75. | [58] | Xu LX, Zhang Y, Lin ZL, et al. FASN-mediated fatty acid biosynthesis remodels immune environment in Clonorchis sinensis infection-related intrahepatic cholangiocarcinoma[J]. J Hepatol, 2024, 81(2): 265-277. | [59] | Lin ZP, Sun HC, Ma Y, et al. Evaluation of immune response to Bacillus subtilis spores expressing Clonorchis sinensis serpin3[J]. Parasitology, 2020, 147(10): 1080-1087. | [60] | Sun HC, Lin ZP, Zhao L, et al. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate[J]. Parasit Vectors, 2018, 11(1): 156. | [61] | Kim YJ, Yoo WG, Lee MR, et al. Molecular and structural characterization of the tegumental 20.6-kDa protein in Clonorchis sinensis as a potential druggable target[J]. Int J Mol Sci, 2017, 18(3): 557. | [62] | Lee DH, Kim AR, Lee SH, et al. Virus-like particles vaccine containing Clonorchis sinensis tegumental protein induces partial protection against Clonorchis sinensis infection[J]. Parasit Vectors, 2017, 10(1): 626. | [63] | Chung E, Kim YJ, Lee MR, et al. A 21.6?kDa tegumental protein of Clonorchis sinensis induces a Th1/Th2 mixed immune response in mice[J]. Immun Inflamm Dis, 2018, 6(4): 435-447. | [64] | 王宁, 赵鹏鹏, 张艳艳, 等. 寄生虫DNA疫苗研究进展[J]. 中国畜牧兽医, 2021, 48(3): 1034-1045. | | Wang N, Zhao PP, Zhang YY, et al. Research progress on DNA vaccine against animal parasite[J]. China Anim Husb Vet Med, 2021, 48(3): 1034-1045. (in Chinese) | [65] | Lee JS, Kim IS, Sohn WM, et al. Vaccination with DNA encoding cysteine proteinase confers protective immune response to rats infected with Clonorchis sinensis[J]. Vaccine, 2006, 24(13): 2358-2366. | [66] | Wang XY, Chen WJ, Lv XL, et al. Identification and characterization of paramyosin from cyst wall of metacercariae implicated protective efficacy against Clonorchis sinensis infection[J]. PLoS One, 2012, 7(3): e33703. | [67] | Cho PY, Lee JY, Kim TI, et al. Serodiagnostic antigens of Clonorchis sinensis identified and evaluated by high-throughput proteogenomics[J]. PLoS Negl Trop Dis, 2020, 14(12): e0008998. | [68] | Bai XL, Song JH, Dai FH, et al. Clonorchis sinensis secretory protein CsAg17 vaccine induces immune protection[J]. Parasit Vectors, 2020, 13(1): 215. | [69] | Wang W, Huang XH, Wang H. Effects of fish-human transmission and different life stages of fish on clonorchiasis: A novel mathematical model[J]. Math Biosci, 2024, 373: 109209. | [70] | Chen JX, Wei CB, Huang WC, et al. Clonorchis sinensis-infected hepatocellular carcinoma exhibits distinct tumor microenvironment and molecular features[J]. Front Immunol, 2025, 16: 1526699. | [71] | Jiang HY, Chen TJ, Sun HC, et al. Immune response induced by oral delivery of Bacillus subtilis spores expressing enolase of Clonorchis sinensis in grass carps (Ctenopharyngodon idellus)[J]. Fish Shellfish Immunol, 2017, 60: 318-325. | [72] | Sun HC, Shang M, Tang ZL, et al. Oral delivery of Bacillus subtilis spores expressing Clonorchis sinensis paramyosin protects grass carp from Cercaria infection[J]. Appl Microbiol Biotechnol, 2020, 104(4): 1633-1646. | [73] | Tang ZL, Sun HC, Chen TJ, et al. Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function[J]. Fish Shellfish Immunol, 2017, 64: 287-296. | [74] | Zhou ZW, Xia HM, Hu XC, et al. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis[J]. Vaccine, 2008, 26(15): 1817-1825. | [75] | Qu HL, Xu YQ, Sun HC, et al. Systemic and local mucosal immune responses induced by orally delivered Bacillus subtilis spore expressing leucine aminopeptidase 2 of Clonorchis sinensis[J]. Parasitol Res, 2014, 113(8): 3095-3103. | [76] | Kaewkong W, Intapan PM, Sanpool O, et al. Molecular differentiation of Opisthorchis viverrini and Clonorchis sinensis eggs by multiplex real-time PCR with high resolution melting analysis[J]. Korean J Parasitol, 2013, 51(6): 689-694. | [77] | Qian MB, Keiser J, Utzinger J, et al. Clonorchiasis and opisthorchiasis: Epidemiology, transmission, clinical features, morbidity, diagnosis, treatment, and control[J]. Clin Microbiol Rev, 2024, 37(1): e0000923. | [78] | Huang TJ, Li L, Li JH, et al. Rapid, sensitive, and visual detection of Clonorchis sinensis with an RPA-CRISPR/Cas12a-based dual readout portable platform[J]. Int J Biol Macromol, 2023, 249: 125967. | [79] | Ma XX, Bai X, Li HC, et al. A rapid and visual detection assay for Clonorchis sinensis based on recombinase polymerase amplification and lateral flow dipstick[J]. Parasit Vectors, 2023, 16(1): 165. | [80] | 陈剑峰, 王志奇, 黄文明, 等. 重组酶介导的等温核酸扩增技术检测淡水鱼华支睾吸虫囊蚴的初步应用[J]. 中国血吸虫病防治杂志, 2023, 35(5): 458-463. | | Chen JF, Wang ZQ, Huang WM, et al. Preliminary application of recombinase-aided amplification in detection of Clonorchis sinensis metacercariae in freshwater fish[J]. Chin J Schisto Control, 2023, 35(5): 458-463. (in Chinese) | [81] | Ma XX, Zhang HY, Fang YM, et al. A point-of-care testing assay for clonorchiasis using a EuNPs-CsTR1 fluorescent probe-based immunoassay[J]. PLoS Negl Trop Dis, 2024, 18(4): e0012107. | [82] | Huang SY, Zeng QS, Shi XF, et al. Assessment of the application of the FA280-a fully automated fecal analyzer for diagnosing clonorchiasis: A mixed-method study[J]. Infect Dis Poverty, 2025, 14: 1. | [83] | Xu S, Lu HZ, Liang X, et al. Nondestructive detection of Clonorchis sinensis infection of raw Pseudorasbora parva fish by near-infrared hyperspectral imaging[J]. LWT, 2024, 203: 116334. |
|