[1] | Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria[J]. Nat Rev Microbiol, 2017, 15(8): 479-491. | [2] | Shi SM, Chen JH. Research progress on the structure and function of Plasmodium falciparum RIFIN protein[J]. Chin J Parasitol Parasit Dis, 2021, 39(2): 249-255. (in Chinese) | | (史善美, 陈军虎. 恶性疟原虫RIFIN蛋白的结构和功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2): 249-255.) | [3] | Goel S, Palmkvist M, Moll K, et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria[J]. Nat Med, 2015, 21(4): 314-317. | [4] | Tan J, Pieper K, Piccoli L, et al. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens[J]. Nature, 2016, 529(7584): 105-109. | [5] | Chen YW, Xu K, Piccoli L, et al. Structural basis of malaria RIFIN binding by LILRB1-containing antibodies[J]. Nature, 2021, 592(7855): 639-643. | [6] | Tham WH, Payne PD, Brown GV, et al. Identification of basic transcriptional elements required for rif gene transcription[J]. Int J Parasitol, 2007, 37(6): 605-615. | [7] | Petter M, Bonow I, Klinkert MQ. Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis[J]. PLoS One, 2008, 3(11): e3779. | [8] | Joannin N, Kallberg Y, Wahlgren M, et al. RSpred, a set of Hidden Markov Models to detect and classify the RIFIN and STEVOR proteins of Plasmodium falciparum[J]. BMC Genomics, 2011, 12: 119. | [9] | Fleck K, Nitz M, Jeffers V. “Reading” a new chapter in protozoan parasite transcriptional regulation[J]. PLoS Pathog, 2021, 17(12): e1010056. | [10] | Berger SL. Histone modifications in transcriptional regulation[J]. Curr Opin Genet Dev, 2002, 12(2): 142-148. | [11] | Li SF, Li X. The role of histone methyltransferase G9a in epigenetic regulation[J]. Chem Life, 2012, 32(4): 322-327. (in Chinese) | | (李淑芬, 李希. 组蛋白甲基转移酶G9a在表观遗传调控中的作用[J]. 生命的化学, 2012, 32(4): 322-327.) | [12] | Kouzarides T. Histone methylation in transcriptional control[J]. Curr Opin Genet Dev, 2002, 12(2): 198-209. | [13] | Cabral FJ, Fotoran WL, Wunderlich G. Dynamic activation and repression of the Plasmodium falciparum rif gene family and their relation to chromatin modification[J]. PLoS One, 2012, 7(1): e29881. | [14] | Lopez-Rubio JJ, Gontijo AM, Nunes MC, et al. 5' flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites[J]. Mol Microbiol, 2007, 66(6): 1296-1305. | [15] | Lopez-Rubio JJ, Gontijo AM, Nunes MC, et al. 5' flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites[J]. Mol Microbiol, 2007, 66(6): 1296-1305. | [16] | Balaji S, Babu MM, Iyer LM, et al. Discovery of the principal specific transcription factors of Api complexa and their implication for the evolution of the AP2-integrase DNA binding domains[J]. Nucl Acid Res, 2005, 33(13): 3994-4006. | [17] | Wu QF, Tao L, Chen JH. Research advance in api complexan AP2 family[J]. Int J Med Parasit Dis, 2015, 42(6): 368-373. (in Chinese) | | (吴群峰, 陶靓, 陈军虎. 顶复门原虫AP2蛋白家族研究进展[J]. 国际医学寄生虫病杂志, 2015, 42(6): 368-373.) | [18] | Yuda MS, Iwanaga S, Shigenobu S, et al. Transcription factor AP2-Sp and its target genes in malarial sporozoites[J]. Mol Microbiol, 2010, 75(4): 854-863. | [19] | Yuda MS, Iwanaga S, Shigenobu S, et al. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites[J]. Mol Microbiol, 2009, 71(6): 1402-1414. | [20] | Iwanaga S, Kaneko I, Kato T, et al. Identification of an AP2-family protein that is critical for malaria liver stage development[J]. PLoS One, 2012, 7(11): e47557. | [21] | Sinha A, Hughes KR, Modrzynska KK, et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium[J]. Nature, 2014, 507(7491): 253-257. | [22] | Kaneko I, Iwanaga S, Kato T, et al. Genome-wide identification of the target genes of AP2-O, a Plasmodium AP2-family transcription factor[J]. PLoS Pathog, 2015, 11(5): e1004905. | [23] | Flueck C, Bartfai R, Niederwieser I, et al. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology[J]. PLoS Pathog, 2010, 6(2): e1000784. | [24] | Martins RM, MacPherson CR, Claes A, et al. An ApiAP2 member regulates expression of clonally variant genes of the human malaria parasite Plasmodium falciparum[J]. Sci Rep, 2017, 7(1): 14042. | [25] | Kafsack BFC, Rovira-Graells N, Clark TG, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites[J]. Nature, 2014, 507(7491): 248-252. | [26] | Choi SW, Keyes MK, Horrocks P. LC/ESI-MS demonstrates the absence of 5-methyl-2'-deoxycytosine in Plasmodium falciparum genomic DNA[J]. Mol Biochem Parasitol, 2006, 150(2): 350-352. | [27] | Gissot M, Choi SW, Thompson RF, et al. Toxoplasma gondii and Cryptosporidium parvum lack detectable DNA cytosine methylation[J]. Eukaryot Cell, 2008, 7(3): 537-540. | [28] | Templeton TJ, Iyer LM, Anantharaman V, et al. Comparative analysis of api complexa and genomic diversity in eukaryotes[J]. Genome Res, 2004, 14(9): 1686-1695. | [29] | Bui HTN, Passecker A, Brancucci NMB, et al. Investigation of heterochromatin protein 1 function in the malaria parasite Plasmodium falciparum using a conditional domain deletion and swapping approach[J]. mSphere, 2021, 6(1): e01220. | [30] | Jose-Juan, Lopez-Rubio. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites[J]. Cell Host Microbe, 2009, 5(2): 179-190. | [31] | Sabine A, Fraschka. Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites[J]. Cell Host Microbe, 2018, 23(3): 407-420. | [32] | Sethumadhavan DV, Tiburcio M, Kanyal A, et al. Chromodomain protein interacts with H3K9me3 and controls RBC rosette formation by regulating the expression of a subset of RIFINs in the malaria parasite[J]. J Mol Biol, 2022, 434(12): 167601. | [33] | Josling GA, Petter M, Oehring SC, et al. A Plasmodium falciparum bromodomain protein regulates invasion gene expression[J]. Cell Host Microbe, 2015, 17(6): 741-751. | [34] | Tham WH, Payne PD, Brown GV, et al. Identification of basic transcriptional elements required for rif gene transcription[J]. Int J Parasitol, 2007, 37(6): 605-615. | [35] | Bachmann A, Bruske E, Krumkamp R, et al. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression[J]. PLoS Pathog, 2019, 15(7): e1007906. | [36] | Mwakalinga SB, Wang CW, Bengtsson DC, et al. Expression of a type B RIFIN in Plasmodium falciparum merozoites and gametes[J]. Malar J, 2012, 11: 429. | [37] | Wang CW, Mwakalinga SB, Sutherland CJ, et al. Identification of a major rif transcript common to gametocytes and sporozoites of Plasmodium falciparum[J]. Malar J, 2010, 9: 147. | [38] | Howitt CA, Wilinski D, Llinás M, et al. Clonally variant gene families in Plasmodium falciparum share a common activation factor[J]. Mol Microbiol, 2009, 73(6): 1171-1185. | [39] | Gasser SM, Cockell MM. The molecular biology of the SIR proteins[J]. Gene, 2001, 279(1): 1-16. | [40] | Frank M, Dzikowski R, Amulic B, et al. Variable switching rates of malaria virulence genes are associated with chromosomal position[J]. Mol Microbiol, 2007, 64(6): 1486-1498. | [41] | Obado SO, Glover L, Deitsch KW. The nuclear envelope and gene organization in parasitic protozoa: specializations associated with disease[J]. Mol Biochem Parasitol, 2016, 209(1/2): 104-113. | [42] | Zhu AY, Zhou YY, Khan S, et al. Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine[J]. ACS Chem Biol, 2012, 7(1): 155-159. | [43] | Tabassum W, Bhattacharya M, Bakshi S, et al. Heat shock protein 90 regulates the activity of histone deacetylase Sir2 in Plasmodium falciparum[J]. mSphere, 2022, 7(5): e0032922. | [44] | Lucio H, Freitas-Junior. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites[J]. Cell, 2005, 121(1): 25-36. | [45] | Witmer K, Schmid CD, Brancucci NMB, et al. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling[J]. Mol Microbiol, 2012, 84(2): 243-259. | [46] | Wang CW, Magistrado PA, Nielsen MA, et al. Preferential transcription of conserved rif genes in two phenotypically distinct Plasmodium falciparum parasite lines[J]. Int J Parasitol, 2009, 39(6): 655-664. |
|