中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (2): 249-255.doi: 10.12140/j.issn.1000-7423.2021.02.019
收稿日期:
2020-09-28
修回日期:
2020-12-15
出版日期:
2021-04-30
发布日期:
2021-04-30
通讯作者:
陈军虎
作者简介:
史善美(1995-),女,硕士研究生,从事寄生虫病防治研究。E-mail: SSM1226@126.com
基金资助:
SHI Shan-mei(), CHEN Jun-hu*()
Received:
2020-09-28
Revised:
2020-12-15
Online:
2021-04-30
Published:
2021-04-30
Contact:
CHEN Jun-hu
Supported by:
摘要:
恶性疟原虫感染易引起重症疟疾甚至导致死亡,在其致病机制中,变异表面抗原家族的重复散布蛋白家族(RIFIN)起了重要作用,它们能介导微静脉血管系统中感染红细胞的黏附和玫瑰花环形成,从而阻断血流,堵塞血管导致重症疟疾。RIFIN在感染红细胞的表面表达,是重要的免疫靶点之一,但由于重复散布的基因家族rif的多基因性和基因多态性,RIFIN能够逃避免疫系统的攻击。同时,RIFIN与免疫细胞表面抑制性受体白细胞免疫球蛋白样受体B1(LILRB1)、白细胞相关免疫球蛋白样受体 1(LAIR1)等的结合能下调免疫反应而达到免疫逃避的目的。近年来,随着对恶性疟分子机制研究的日趋深入,研发能够诱导产生有效保护性免疫的疫苗成为预防疟疾、实现疟疾消除计划的关键。本文描述了恶性疟原虫RIFIN的结构,并强调了它们在重症疟疾中的作用以及相关的免疫和疫苗研究进展。
中图分类号:
史善美, 陈军虎. 恶性疟原虫RIFIN蛋白的结构和功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2): 249-255.
SHI Shan-mei, CHEN Jun-hu. Research progress on the structure and function of RIFIN protein of Plasmodium falciparum[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(2): 249-255.
[1] | WHO. World malaria report 2020[M]. Geneva: WHO, 2020. |
[2] |
Weiss DJ, Lucas TCD, Nguyen M, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000-17: a spatial and temporal modelling study[J]. Lancet, 2019,394(10195):322-331.
doi: 10.1016/S0140-6736(19)31097-9 |
[3] |
Krief S, Escalante AA, Pacheco MA, et al. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from Bonobos[J]. PLoS Pathog, 2010,6(2):e1000765.
doi: 10.1371/journal.ppat.1000765 |
[4] |
Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016,167(3):610-624.
doi: S0092-8674(16)31008-X pmid: 27768886 |
[5] |
Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria[J]. Nat Rev Microbiol, 2017,15(8):479-491.
doi: 10.1038/nrmicro.2017.47 |
[6] |
Goel S, Palmkvist M, Moll K, et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria[J]. Nat Med, 2015,21(4):314-317.
doi: 10.1038/nm.3812 pmid: 90443937122226201 |
[7] |
Tan J, Pieper K, Piccoli L, et al. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens[J]. Nature, 2016,529(7584):105-109.
doi: 10.1038/nature16450 |
[8] | Saito F, Hirayasu K, Satoh T, et al. Corrigendum: immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors[J]. Nature, 2018,554(7693):554. |
[9] |
Helmby H, Cavelier L, Pettersson U, et al. Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface[J]. Infect Immun, 1993,61(1):284-288.
pmid: 7678099 |
[10] |
Kyes SA, Rowe JA, Kriek N, et al. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum[J]. Proc Natl Acad Sci USA, 1999,96(16):9333-9338.
doi: 10.1073/pnas.96.16.9333 |
[11] |
Fernandez V, Hommel M, Chen Q, et al. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses[J]. J Exp Med, 1999,190(10):1393-1404.
doi: 10.1084/jem.190.10.1393 |
[12] |
Petter M, Haeggström M, Khattab A, et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns[J]. Mol Biochem Parasitol, 2007,156(1):51-61.
doi: 10.1016/j.molbiopara.2007.07.011 |
[13] |
Petter M, Bonow I, Klinkert MQ. Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis[J]. PLoS One, 2008,3(11):e3779.
doi: 10.1371/journal.pone.0003779 |
[14] |
Joannin N, Abhiman S, Sonnhammer EL, et al. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family[J]. BMC Genomics, 2008,9:19.
doi: 10.1186/1471-2164-9-19 |
[15] |
Joannin N, Kallberg Y, Wahlgren M, et al. RSpred, a set of Hidden Markov Models to detect and classify the RIFIN and STEVOR proteins of Plasmodium falciparum[J]. BMC Genomics, 2011,12:119.
doi: 10.1186/1471-2164-12-119 |
[16] |
McRobert L, Preiser P, Sharp S, et al. Distinct trafficking and localization of STEVOR proteins in three stages of the Plasmodium falciparum life cycle[J]. Infect Immun, 2004,72(11):6597-6602.
pmid: 15501792 |
[17] |
Bachmann A, Esser C, Petter M, et al. Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient[J]. PLoS One, 2009,4(10):e7459.
doi: 10.1371/journal.pone.0007459 |
[18] |
Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum[J]. Nature, 2002,419(6906):498-511.
doi: 10.1038/nature01097 |
[19] |
Cheng Q, Cloonan N, Fischer K, et al. Stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens[J]. Mol Biochem Parasitol, 1998,97(1/2):161-176.
doi: 10.1016/S0166-6851(98)00144-3 |
[20] |
Hessa T, Kim H, Bihlmaier K, et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon[J]. Nature, 2005,433(7024):377-381.
pmid: 15674282 |
[21] |
Hiller NL Bhattacharjee S van Ooij C, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection[J]. Science, 2004,306(5703):1934-1937.
doi: 10.1126/science.1102737 |
[22] |
Marti M, Good RT, Rug M, et al. Targeting malaria virulence and remodeling proteins to the host erythrocyte[J]. Science, 2004,306(5703):1930-1933.
doi: 10.1126/science.1102452 |
[23] |
Bachmann A, Scholz JA, Janßen M, et al. A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes[J]. Malar J, 2015,14:274.
doi: 10.1186/s12936-015-0784-2 |
[24] |
Harrison TE, Mørch AM, Felce JH, et al. Structural basis for RIFIN-mediated activation of LILRB1 in malaria[J]. Nature, 2020,587(7833):309-312.
doi: 10.1038/s41586-020-2530-3 |
[25] |
Scherf A, Lopez-Rubio JJ, Riviere L. Antigenic variation in Plasmodium falciparum[J]. Annu Rev Microbiol, 2008,62(1):445-470.
doi: 10.1146/annurev.micro.61.080706.093134 |
[26] |
Miller LH, Ackerman HC, Su XZ, et al. Malaria biology and disease pathogenesis: insights for new treatments[J]. Nat Med, 2013,19(2):156-167.
doi: 10.1038/nm.3073 |
[27] |
Vigan-Womas I, Guillotte M, Juillerat A, et al. Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting[J]. PLoS Pathog, 2012,8(7):e1002781.
doi: 10.1371/journal.ppat.1002781 |
[28] |
Rowe JA, Handel IG, Thera MA, et al. Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting[J]. Proc Natl Acad Sci USA, 2007,104(44):17471-17476.
doi: 10.1073/pnas.0705390104 |
[29] | Cserti CM, Dzik WH. The ABO blood group system and Plasmodium falciparum malaria[J]. Blood, 2007,110(7):2250-2258. |
[30] | Daniels G. Human Blood Groups,3rd edition[M]. Chichester: Wiley-Blackwell, 2013. |
[31] |
Albrecht L, Moll K, Blomqvist K, et al. Var gene transcription and PfEMP1 expression in the rosetting and cytoadhesive Plasmodium falciparum clone FCR3S1.2[J]. Malar J, 2011,10:17.
doi: 10.1186/1475-2875-10-17 |
[32] |
Stevenson L, Laursen E, Cowan GJ, et al. α2-macroglobulin can crosslink multiple Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes[J]. PLoS Pathog, 2015,11(7):e1005022.
doi: 10.1371/journal.ppat.1005022 |
[33] |
Treutiger CJ, Scholander C, Carlson J, et al. Rouleaux-forming serum proteins are involved in the rosetting of Plasmodium falciparum-infected erythrocytes[J]. Exp Parasitol, 1999,93(4):215-224.
pmid: 10600447 |
[34] |
Niang M, Bei AK, Madnani KG, et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting[J]. Cell Host Microbe, 2014,16(1):81-93.
doi: 10.1016/j.chom.2014.06.004 |
[35] |
McLean AR, Ataide R, Simpson JA, et al. Malaria and immunity during pregnancy and postpartum: a tale of two species[J]. Parasitology, 2015,142(8):999-1015.
doi: 10.1017/S0031182015000074 pmid: 25731914 |
[36] |
Saito F, Hirayasu K, Satoh T, et al. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors[J]. Nature, 2017,552(7683):101-105.
doi: 10.1038/nature24994 |
[37] | Zhou AE, Berry AA, Bailey JA, et al. Antibodies to peptides in semiconserved domains of RIFINs and STEVORs correlate with malaria exposure[J]. mSphere, 2019,4(2):e00097-19. |
[38] |
Moll K, Palmkvist M, Ch’ng J, et al. Evasion of immunity to Plasmodium falciparum: rosettes of blood group A impair recognition of PfEMP1[J]. PLoS One, 2015,10(12):e0145120.
doi: 10.1371/journal.pone.0145120 |
[39] |
Pieper K, Tan J, Piccoli L, et al. Public antibodies to malaria antigens generated by two LAIR1 insertion modalities[J]. Nature, 2017,548(7669):597-601.
doi: 10.1038/nature23670 |
[40] | Lanzavecchia A. Dissecting human antibody responses: useful, basic and surprising findings[J]. EMBO Mol Med, 2018,10(3):e8879. |
[41] |
Naji A, Menier C, Morandi F, et al. Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses[J]. J Immunol, 2014,192(4):1536-1546.
doi: 10.4049/jimmunol.1300438 |
[42] |
Chan JA, Howell KB, Reiling L, et al. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity[J]. J Clin Invest, 2012,122(9):3227-3238.
doi: 10.1172/JCI62182 |
[43] |
Kinyanjui SM, Bull P, Newbold CI, et al. Kinetics of antibody responses to Plasmodium falciparum-infected erythrocyte variant surface antigens[J]. J Infect Dis, 2003,187(4):667-674.
pmid: 12599084 |
[44] |
Abdel-Latif MS, Khattab A, Lindenthal C, et al. Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections[J]. Infect Immun, 2002,70(12):7013-7021.
pmid: 12438381 |
[45] |
Abdel-Latif MS, Cabrera G, Köhler C, et al. Antibodies to rifin: a component of naturally acquired responses to Plasmodium falciparum variant surface antigens on infected erythrocytes[J]. Am J Trop Med Hyg, 2004,71(2):179-186.
pmid: 15306707 |
[46] |
Arora G, Hart GT, Manzella-Lapeira J, et al. NK cells inhibit Plasmodium falciparum growth in red blood cells via antibody-dependent cellular cytotoxicity[J]. Elife, 2018,7:e36806.
doi: 10.7554/eLife.36806 |
[47] |
Travassos MA, Niangaly A, Bailey JA, et al. Children with cerebral malaria or severe malarial anaemia lack immunity to distinct variant surface antigen subsets[J]. Sci Rep, 2018,8(1):6281.
doi: 10.1038/s41598-018-24462-4 |
[48] |
Abdel-Latif MS, Dietz K, Issifou S, et al. Antibodies to Plasmodium falciparum rifin proteins are associated with rapid parasite clearance and asymptomatic infections[J]. Infect Immun, 2003,71(11):6229-6233.
pmid: 14573641 |
[49] |
Quintana MDP, Ch’ng JH, Moll K, et al. Antibodies in children with malaria to PfEMP1, RIFIN and SURFIN expressed at the Plasmodium falciparum parasitized red blood cell surface[J]. Sci Rep, 2018,8(1):3262.
doi: 10.1038/s41598-018-21026-4 |
[50] |
Kanoi BN, Nagaoka H, White MT, et al. Global repertoire of human antibodies against Plasmodium falciparum RIFINs, SURFINs, and STEVORs in a malaria exposed population[J]. Front Immunol, 2020,11:893.
doi: 10.3389/fimmu.2020.00893 |
[51] |
Kaur J, Hora R. ‘2TM proteins’: an antigenically diverse superfamily with variable functions and export pathways[J]. Peer J, 2018,6:e4757.
doi: 10.7717/peerj.4757 |
[52] |
Beeson JG, Osier FH, Engwerda CR. Recent insights into humoral and cellular immune responses against malaria[J]. Trends Parasitol, 2008,24(12):578-584.
doi: 10.1016/j.pt.2008.08.008 pmid: 18848497 |
[1] | 周瑞敏, 纪鹏慧, 李素华, 杨成运, 刘颖, 钱丹, 邓艳, 鲁德领, 赵玉玲, 赵东阳, 张红卫. 河南省自赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 593-600. |
[2] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[3] | 田斌, 廖瑜, 文岚, 肖芳, 张兵, 申晓君. 长沙市122例输入性恶性疟原虫多药抗性基因1拷贝数变异分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 127-131. |
[4] | 石明丽, 肖波, 江陆斌. 恶性疟原虫var基因的表达调控机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 719-724. |
[5] | 廖文中, 徐李清, 姚礼捷, 陈敏, 彭鸿娟. 弓形虫感染后宿主细胞泛素化蛋白谱变化的特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 487-493. |
[6] | 张苍林, 聂仁华, 徐丹, 吕高伟, 王剑, 杨亚明, 邓艳, 刘言, 周红宁. 中缅边境地区恶性疟原虫Pfcrt、Pfmdr和PfK13基因多态性与体外药物敏感性相关性的分析[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 580-588. |
[7] | 叶升玉, 成依依, 李曼, 周红宁. 我国恶性疟原虫主要药物抗性研究[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 631-636. |
[8] | 周水茂, 涂祖武, 杨燕, 陈芳, 贾西帅. 环介导等温扩增检测恶性疟原虫与其他疟原虫的效果评价[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(4): 423-428. |
[9] | 叶升玉, 成依依, 李曼, 周红宁. 恶性疟原虫抗药性分子标记检测方法研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(4): 490-495. |
[10] | 李仁清, 王小梅, 孙玉兰, 吕燕宁, 窦相峰, 王全意. 宏基因组学二代测序技术在输入性疟疾诊断中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(6): 727-729. |
[11] | 牟畇珊, 李璐杰, 吴银娟, 李学荣. 疟原虫青蒿素耐药分子机制探索[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 636-642. |
[12] | 刘寒冬, 王宏宾, 樊海宁, 牛海峰, 王志鑫. 多房棘球蚴病的免疫逃避机制[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 655-660. |
[13] | 刘纯, NdoumadiambaALFRED, MounzieGouGNONDA. 胶体金恶性疟原虫检测试剂盒在非洲加蓬的临床应用[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 679-680. |
[14] | 毛强, 裴福全, 岑咏珍, 刘梦然, 张豪, 邓卓晖. 广东省1例输血性恶性疟病例的实验室检测和溯源调查[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5): 529-533. |
[15] | 王志华, 魏春燕, 王恒. 恶性疟原虫非编码RNA的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4): 409-413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||