[1] | Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016,167(3):610-624. | [2] | Dondorp AM, Yeung S, White L, et al. Artemisinin resistance: current status and scenarios for containment[J]. Nat Rev Microbiol, 2010,8(4):272-280. | [3] | Xu C, Huang BC, Yan G, et al. Research progress on molecular markers of Plasmodium falciparum and drug resistance-related molecules[J]. Chin J Pathog Biol, 2016,11(12):1149-1152. (in Chinese) | [3] | ( 徐超, 黄炳成, 闫歌, 等. 恶性疟原虫与耐药性相关分子遗传标记的研究进展[J]. 中国病原生物学杂志, 2016,11(12):1149-1152.) | [4] | World Health Organization. Guidelines for the treatment of malaria[J]. Geneva: WHO, 2015. | [5] | Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western Cambodia[J]. N Engl J Med, 2008,359(24):2619-2620. | [6] | Li N, Huang YM, Cai WB, et al. Advances in the study of the sensitivity of Plasmodium falciparum to dihydroartemisinin-piperaquine[J]. Chin J Pathog Biol, 2017,12(10):1025-1027. (in Chinese) | [6] | ( 李娜, 黄亚铭, 蔡文斌, 等. 恶性疟原虫对双氢青蒿素-哌喹敏感性研究进展[J]. 中国病原生物学杂志, 2017,12(10):1025-1027.) | [7] | Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2009,361(5):455-467. | [8] | Zhang YL, Pan WQ. Research progress on the resistance of Plasmodium falciparum to artemisinin[J]. Chin J Parasitol Parasit Dis, 2015,33(6):418-424. (in Chinese) | [8] | ( 张逸龙, 潘卫庆. 恶性疟原虫对青蒿素产生抗性的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(6):418-424.) | [9] | Ye R, Hu D, Zhang Y, et al. Distinctive origin of artemisinin resistant Plasmodium falciparum on the China-Myanmar border[R]. Sci Rep, 2016,6:20100. | [10] | Zhao SM, Wang MY. Global status and basic research on the resistance of Plasmodium falciparum to artemisinin[J]. Chin J Parasitol Parasit Dis, 2014,32(5):380-384. (in Chinese) | [10] | ( 赵绍敏, 王满元. 恶性疟原虫对青蒿素类药物产生耐药性的全球现状和基础研究[J]. 中国寄生虫学与寄生虫病杂志, 2014,32(5):380-384.) | [11] | Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014,505(7481):50-55. | [12] | Plowe CV. The evolution of drug-resistant malaria[J]. Trans R Soc Trop Med Hyg, 2009,103(Suppl 1):S11-S14. | [13] | Lin JT, Juliano JJ, Wongsrichanalai C. Drug-resistant malaria: the era of ACT[J]. Curr Infect Dis Rep, 2010,12(3):165-173. | [14] | Noedl H, Attlmayr B, Wernsdorfer WH, et al. A histidine-rich protein 2-based malaria drug sensitivity assay for field use[J]. Am J Trop Med Hyg, 2004,71(6):711-714. | [15] | Zhang MH, Lu F, Cao J, et al. Research progress on molecular markers related to drug resistance of Plasmodium falciparum[J]. Chin J Schisto Control, 2015,27(3):323-327. (in Chinese) | [15] | ( 张梅花, 陆凤, 曹俊, 等. 恶性疟原虫药物抗性相关分子标记研究进展[J]. 中国血吸虫病防治杂志, 2015,27(3):323-327.) | [16] | Fidock DA, Nomura T, Talley AK, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance[J]. Mol Cell, 2000,6(4):861-871. | [17] | Fidock DA, Eastman RT, Ward SA, et al. Recent highlights in antimalarial drug resistance and chemotherapy research[J]. Trends Parasitol, 2008,24(12):537-544. | [18] | Awasthi G, Das A. Genetics of chloroquine-resistant malaria: a haplotypic view[J]. Mem Inst Oswaldo Cruz, 2013,108(8):947-961. | [19] | Lakshmanan V, Bray PG, Verdier-Pinard D, et al. A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance[J]. EMBO J, 2005,24(13):2294-2305. | [20] | Dai TT, Lu CC, Zheng XB. Application research progress of Loop-mediated isothermal amplification in the pathogenic microorganism[J]. J Nanjing Agric Univ, 2015,38(5):695-703. (in Chinese) | [20] | ( 戴婷婷, 陆辰晨, 郑小波. 环介导等温扩增技术在病原物检测上的应用研究进展[J]. 南京农业大学学报, 2015,38(5):695-703.) | [21] | Chahar M, Mishra N, Anvikar A, et al. Establishment and application of a novel isothermal amplification assay for rapid detection of chloroquine resistance (K76T) in Plasmodium falciparum[J]. Sci Rep, 2017,7:41119. | [22] | Lin LH, Huang LX, Liu GM. Value and feasibility of improved loop-mediated isothermal amplification technique in the detection of SNPs of Plasmodium falciparum resistance gene[J]. Hainan Med J, 2017,28(15):2474-2477. (in Chinese) | [22] | ( 林岭海, 黄良喜, 刘光明. 改良环介导等温扩增技术在疟原虫耐药基因SNP检测中的价值及可行性[J]. 海南医学, 2017,28(15):2474-2477.) | [23] | Bashir IM, Otsyula N, Awinda G, et al. Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study[J]. PLoS One, 2013,8(3):e56828. | [24] | Farcas GA, Soeller R, Zhong K, et al. Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers[J]. Clin Infect Dis, 2006,42(5):622-627. | [25] | Keen J, Farcas GA, Zhong K, et al. Real-time PCR assay for rapid detection and analysis of PfCRT haplotypes of chloroquine-resistant Plasmodium falciparum isolates from India[J]. J Clin Microbiol, 2007,45(9):2889-2893. | [26] | Rolf HA, Emmelien A, Anja R, et al. High-resolution melting analysis(HRMA): more than just sequence variant screening[J]. Hum Mutat, 2009,30(6):860-866. | [27] | Andriantsoanirina V, Lascombes V, Ratsimbasoa A, et al. Rapid detection of point mutations in Plasmodium falciparum genes associated with antimalarial drugs resistance by using high-resolution melting analysis[J]. J Microbiol Methods, 2009,78(2):165-170. | [28] | Gan LS, Loh JP. Rapid identification of chloroquine and atovaquone drug resistance in Plasmodium falciparum using high-resolution melt polymerase chain reaction[J]. Malar J, 2010,9:134. | [29] | Dong Y, Zhang ZX, Adagu IS. Detection of polymorphism of Plasmodium falciparum chloroquine resistant gene 76 Codon by nested PCR/RFLP[J]. J Pract Parasit Dis, 2001(3):104-107. (in Chinese) | [29] | ( 董莹, 张再兴, Adagu IS. 套式PCR检测恶性疟原虫Pfcrt基因76号编码多态性及RFLP分析[J]. 实用寄生虫病杂志, 2001(3):104-107.) | [30] | Pholwat S, Liu J, Stroup S, et al. The malaria TaqMan array card includes 87 assays for Plasmodium falciparum drug resistance, identification of species, and genotyping in a single reaction[J]. Antimicrob Agents Chemother, 2017,61(5):e00110-e00117. | [31] | Crameri A, Marfurt J, Mugittu K, et al. Rapid microarray-based method for monitoring of all currently known single-nucleotide polymorphisms associated with parasite resistance to antimalaria drugs[J]. J Clin Microbiol, 2007,45(11):3685-3691. | [32] | Wong RP, Karunajeewa H, Mueller I, et al. Molecular assessment of Plasmodium falciparum resistance to antimalarial drugs in Papua New Guinea using an extended ligase detection reaction fluorescent microsphere assay[J]. Antimicrob Agents Chemother, 2011,55(2):798-805. | [33] | Mohon AN, Menard D, Alam MS, et al. A novel single-nucleotide polymorphism loop mediated isothermal amplification assay for detection of artemisinin-resistant Plasmodium falciparum malaria[J]. Open Forum Infect Dis, 2018, 5(4): ofy011. | [34] | Singh R, Singh DP, Savargaonkar D, et al. Evaluation of SYBR green I based visual loop-mediated isothermal amplification (LAMP) assay for genus and species-specific diagnosis of malaria in P. vivax and P. falciparum endemic regions[J]. J Vector Borne Dis, 2017,54(1):54-60. | [35] | Imai K, Tarumoto N, Misawa K, et al. A novel diagnostic method for malaria using loop-mediated isothermal amplification (LAMP) and MinIONTM nanopore sequencer[J]. BMC Infect Dis, 2017,17(1):621. | [36] | Imai K, Tarumoto N, Runtuwene LR, et al. An innovative diagnostic technology for the Codon mutation C580Y in kelch13 of Plasmodium falciparum with MinION nanopore sequencer[J]. Malar J, 2018,17(1):217. | [37] | Malpartida-Cardenas K, Rodriguez-Manzano J, Yu LS, et al. Allele-specific isothermal amplification method using unmodified self-stabilizing competitive primers[J]. Anal Chem, 2018,90(20):11972-11980. | [38] | Vachot-Ganée L, Khim N, Iannello A, et al. A novel field-based molecular assay to detect validated artemisinin-resistant k13 mutants[J]. Malar J, 2018,17(1):175. | [39] | Mens PF, van Overmeir C, Bonnet M, et al. Real-time PCR/MCA assay using fluorescence resonance energy transfer for the genotyping of resistance related DHPS-540 mutations in Plasmodium falciparum[J]. Malar J, 2008,7:48. | [40] | Cruz RE, Shokoples SE, Manage DP, et al. High-throughput genotyping of single nucleotide polymorphisms in the Plasmodium falciparum dhfr gene by asymmetric PCR and melt-curve analysis[J]. J Clin Microbiol, 2010,48(9):3081-3087. | [41] | Kamau E, Alemayehu S, Feghali KC, et al. Development of a TaqMan Allelic Discrimination assay for detection of single nucleotides polymorphisms associated with anti-malarial drug resistance[J]. Malar J, 2012,11:23. | [42] | Yongkiettrakul S, Kampeera J, Chareanchim W, et al. Simple detection of single nucleotide polymorphism in Plasmodium falciparum by SNP-LAMP assay combined with lateral flow dipstick[J]. Parasitol Int, 2017,66(1):964-971. | [43] | Daniels R, Ndiaye D, Wall M, et al. Rapid, field-deployable method for genotyping and discovery of single-nucleotide polymorphisms associated with drug resistance in Plasmodium falciparum[J]. Antimicrob Agents Chemother, 2012,56(6):2976-2986. | [44] | Bass C, Nikou D, Donnelly MJ, et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods[J]. Malar J, 2007,6:111. | [45] | Reed MB, Saliba KJ, Caruana SR, et al. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum[J]. Nature, 2000,403(6772):906-909. | [46] | Ibraheem ZO, Abd Majid R, Noor SM, et al. Role of different pfcrt and pfmdr-1 mutations in conferring resistance to antimalaria drugs in Plasmodium falciparum[J]. Malar Res Treat, 2014,2014:950424. | [47] | Purfield A, Nelson A, Laoboonchai A, et al. A new method for detection of pfmdr1 mutations in Plasmodium falciparum DNA using real-time PCR[J]. Malar J, 2004,3:9. | [48] | Nankoberanyi S, Mbogo GW, LeClair NP, et al. Validation of the ligase detection reaction fluorescent microsphere assay for the detection of Plasmodium falciparum resistance mediating polymorphisms in Uganda[J]. Malar J, 2014,13:95. |
|