中国寄生虫学与寄生虫病杂志 ›› 2020, Vol. 38 ›› Issue (4): 490-495.doi: 10.12140/j.issn.1000-7423.2020.04.016
收稿日期:
2019-11-26
出版日期:
2020-08-30
发布日期:
2020-09-09
通讯作者:
周红宁
作者简介:
叶升玉(1994-),女,硕士研究生,主要从事虫媒传染病防治研究。E-mail:基金资助:
YE Sheng-yu1(), CHENG Yi-yi2, LI Man2, ZHOU Hong-ning2,*()
Received:
2019-11-26
Online:
2020-08-30
Published:
2020-09-09
Contact:
ZHOU Hong-ning
Supported by:
摘要:
疟疾是非洲和东南亚地区流行的重要热带病,严重威胁着当地居民的身体健康。随着恶性疟原虫对抗疟药物抗性的产生与蔓延,全球消除疟疾目标的实现面临着新的挑战。目前恶性疟原虫抗药性监测方法主要包括体内药效试验法、体外药敏检测法和抗性分子标记检测法,其中抗性分子标记检测法被广泛应用。本文就恶性疟原虫抗药性分子标记检测方法研究进展作一综述。
中图分类号:
叶升玉, 成依依, 李曼, 周红宁. 恶性疟原虫抗药性分子标记检测方法研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(4): 490-495.
YE Sheng-yu, CHENG Yi-yi, LI Man, ZHOU Hong-ning. Advances in methods for detecting drug-resistance molecular markers of Plasmodium falciparum[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2020, 38(4): 490-495.
[1] |
Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016,167(3):610-624.
doi: 10.1016/j.cell.2016.07.055 pmid: 27768886 |
[2] |
Dondorp AM, Yeung S, White L, et al. Artemisinin resistance: current status and scenarios for containment[J]. Nat Rev Microbiol, 2010,8(4):272-280.
doi: 10.1038/nrmicro2331 pmid: 20208550 |
[3] | Xu C, Huang BC, Yan G, et al. Research progress on molecular markers of Plasmodium falciparum and drug resistance-related molecules[J]. Chin J Pathog Biol, 2016,11(12):1149-1152. (in Chinese) |
( 徐超, 黄炳成, 闫歌, 等. 恶性疟原虫与耐药性相关分子遗传标记的研究进展[J]. 中国病原生物学杂志, 2016,11(12):1149-1152.) | |
[4] | World Health Organization. Guidelines for the treatment of malaria[J]. Geneva: WHO, 2015. |
[5] |
Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western Cambodia[J]. N Engl J Med, 2008,359(24):2619-2620.
doi: 10.1056/NEJMc0805011 pmid: 19064625 |
[6] | Li N, Huang YM, Cai WB, et al. Advances in the study of the sensitivity of Plasmodium falciparum to dihydroartemisinin-piperaquine[J]. Chin J Pathog Biol, 2017,12(10):1025-1027. (in Chinese) |
( 李娜, 黄亚铭, 蔡文斌, 等. 恶性疟原虫对双氢青蒿素-哌喹敏感性研究进展[J]. 中国病原生物学杂志, 2017,12(10):1025-1027.) | |
[7] |
Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2009,361(5):455-467.
doi: 10.1056/NEJMoa0808859 pmid: 19641202 |
[8] | Zhang YL, Pan WQ. Research progress on the resistance of Plasmodium falciparum to artemisinin[J]. Chin J Parasitol Parasit Dis, 2015,33(6):418-424. (in Chinese) |
( 张逸龙, 潘卫庆. 恶性疟原虫对青蒿素产生抗性的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(6):418-424.) | |
[9] | Ye R, Hu D, Zhang Y, et al. Distinctive origin of artemisinin resistant Plasmodium falciparum on the China-Myanmar border[R]. Sci Rep, 2016,6:20100. |
[10] | Zhao SM, Wang MY. Global status and basic research on the resistance of Plasmodium falciparum to artemisinin[J]. Chin J Parasitol Parasit Dis, 2014,32(5):380-384. (in Chinese) |
( 赵绍敏, 王满元. 恶性疟原虫对青蒿素类药物产生耐药性的全球现状和基础研究[J]. 中国寄生虫学与寄生虫病杂志, 2014,32(5):380-384.) | |
[11] |
Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014,505(7481):50-55.
doi: 10.1038/nature12876 pmid: 24352242 |
[12] |
Plowe CV. The evolution of drug-resistant malaria[J]. Trans R Soc Trop Med Hyg, 2009,103(Suppl 1):S11-S14.
doi: 10.1016/j.trstmh.2008.11.002 |
[13] |
Lin JT, Juliano JJ, Wongsrichanalai C. Drug-resistant malaria: the era of ACT[J]. Curr Infect Dis Rep, 2010,12(3):165-173.
doi: 10.1007/s11908-010-0099-y |
[14] |
Noedl H, Attlmayr B, Wernsdorfer WH, et al. A histidine-rich protein 2-based malaria drug sensitivity assay for field use[J]. Am J Trop Med Hyg, 2004,71(6):711-714.
pmid: 15642959 |
[15] | Zhang MH, Lu F, Cao J, et al. Research progress on molecular markers related to drug resistance of Plasmodium falciparum[J]. Chin J Schisto Control, 2015,27(3):323-327. (in Chinese) |
( 张梅花, 陆凤, 曹俊, 等. 恶性疟原虫药物抗性相关分子标记研究进展[J]. 中国血吸虫病防治杂志, 2015,27(3):323-327.)
doi: 10.16250/j.32.1374.2014227 |
|
[16] |
Fidock DA, Nomura T, Talley AK, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance[J]. Mol Cell, 2000,6(4):861-871.
doi: 10.1016/s1097-2765(05)00077-8 pmid: 11090624 |
[17] |
Fidock DA, Eastman RT, Ward SA, et al. Recent highlights in antimalarial drug resistance and chemotherapy research[J]. Trends Parasitol, 2008,24(12):537-544.
doi: 10.1016/j.pt.2008.09.005 pmid: 18938106 |
[18] |
Awasthi G, Das A. Genetics of chloroquine-resistant malaria: a haplotypic view[J]. Mem Inst Oswaldo Cruz, 2013,108(8):947-961.
doi: 10.1590/0074-0276130274 pmid: 24402147 |
[19] |
Lakshmanan V, Bray PG, Verdier-Pinard D, et al. A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance[J]. EMBO J, 2005,24(13):2294-2305.
pmid: 15944738 |
[20] | Dai TT, Lu CC, Zheng XB. Application research progress of Loop-mediated isothermal amplification in the pathogenic microorganism[J]. J Nanjing Agric Univ, 2015,38(5):695-703. (in Chinese) |
( 戴婷婷, 陆辰晨, 郑小波. 环介导等温扩增技术在病原物检测上的应用研究进展[J]. 南京农业大学学报, 2015,38(5):695-703.) | |
[21] |
Chahar M, Mishra N, Anvikar A, et al. Establishment and application of a novel isothermal amplification assay for rapid detection of chloroquine resistance (K76T) in Plasmodium falciparum[J]. Sci Rep, 2017,7:41119.
doi: 10.1038/srep41119 pmid: 28134241 |
[22] | Lin LH, Huang LX, Liu GM. Value and feasibility of improved loop-mediated isothermal amplification technique in the detection of SNPs of Plasmodium falciparum resistance gene[J]. Hainan Med J, 2017,28(15):2474-2477. (in Chinese) |
( 林岭海, 黄良喜, 刘光明. 改良环介导等温扩增技术在疟原虫耐药基因SNP检测中的价值及可行性[J]. 海南医学, 2017,28(15):2474-2477.) | |
[23] |
Bashir IM, Otsyula N, Awinda G, et al. Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study[J]. PLoS One, 2013,8(3):e56828.
doi: 10.1371/journal.pone.0056828 pmid: 23554856 |
[24] |
Farcas GA, Soeller R, Zhong K, et al. Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers[J]. Clin Infect Dis, 2006,42(5):622-627.
doi: 10.1086/500134 pmid: 16447106 |
[25] |
Keen J, Farcas GA, Zhong K, et al. Real-time PCR assay for rapid detection and analysis of PfCRT haplotypes of chloroquine-resistant Plasmodium falciparum isolates from India[J]. J Clin Microbiol, 2007,45(9):2889-2893.
doi: 10.1128/JCM.02291-06 pmid: 17609321 |
[26] |
Rolf HA, Emmelien A, Anja R, et al. High-resolution melting analysis(HRMA): more than just sequence variant screening[J]. Hum Mutat, 2009,30(6):860-866.
doi: 10.1002/humu.21019 pmid: 19418555 |
[27] |
Andriantsoanirina V, Lascombes V, Ratsimbasoa A, et al. Rapid detection of point mutations in Plasmodium falciparum genes associated with antimalarial drugs resistance by using high-resolution melting analysis[J]. J Microbiol Methods, 2009,78(2):165-170.
doi: 10.1016/j.mimet.2009.05.013 pmid: 19465064 |
[28] |
Gan LS, Loh JP. Rapid identification of chloroquine and atovaquone drug resistance in Plasmodium falciparum using high-resolution melt polymerase chain reaction[J]. Malar J, 2010,9:134.
doi: 10.1186/1475-2875-9-134 pmid: 20487570 |
[29] | Dong Y, Zhang ZX, Adagu IS. Detection of polymorphism of Plasmodium falciparum chloroquine resistant gene 76 Codon by nested PCR/RFLP[J]. J Pract Parasit Dis, 2001(3):104-107. (in Chinese) |
( 董莹, 张再兴, Adagu IS. 套式PCR检测恶性疟原虫Pfcrt基因76号编码多态性及RFLP分析[J]. 实用寄生虫病杂志, 2001(3):104-107.) | |
[30] |
Pholwat S, Liu J, Stroup S, et al. The malaria TaqMan array card includes 87 assays for Plasmodium falciparum drug resistance, identification of species, and genotyping in a single reaction[J]. Antimicrob Agents Chemother, 2017,61(5):e00110-e00117.
doi: 10.1128/AAC.00110-17 pmid: 28264857 |
[31] |
Crameri A, Marfurt J, Mugittu K, et al. Rapid microarray-based method for monitoring of all currently known single-nucleotide polymorphisms associated with parasite resistance to antimalaria drugs[J]. J Clin Microbiol, 2007,45(11):3685-3691.
doi: 10.1128/JCM.01178-07 pmid: 17804664 |
[32] |
Wong RP, Karunajeewa H, Mueller I, et al. Molecular assessment of Plasmodium falciparum resistance to antimalarial drugs in Papua New Guinea using an extended ligase detection reaction fluorescent microsphere assay[J]. Antimicrob Agents Chemother, 2011,55(2):798-805.
doi: 10.1128/AAC.00939-10 pmid: 21078925 |
[33] |
Mohon AN, Menard D, Alam MS, et al. A novel single-nucleotide polymorphism loop mediated isothermal amplification assay for detection of artemisinin-resistant Plasmodium falciparum malaria[J]. Open Forum Infect Dis, 2018, 5(4): ofy011.
doi: 10.1093/ofid/ofy011 pmid: 29707598 |
[34] |
Singh R, Singh DP, Savargaonkar D, et al. Evaluation of SYBR green I based visual loop-mediated isothermal amplification (LAMP) assay for genus and species-specific diagnosis of malaria in P. vivax and P. falciparum endemic regions[J]. J Vector Borne Dis, 2017,54(1):54-60.
pmid: 28352046 |
[35] |
Imai K, Tarumoto N, Misawa K, et al. A novel diagnostic method for malaria using loop-mediated isothermal amplification (LAMP) and MinIONTM nanopore sequencer[J]. BMC Infect Dis, 2017,17(1):621.
doi: 10.1186/s12879-017-2718-9 pmid: 28903726 |
[36] |
Imai K, Tarumoto N, Runtuwene LR, et al. An innovative diagnostic technology for the Codon mutation C580Y in kelch13 of Plasmodium falciparum with MinION nanopore sequencer[J]. Malar J, 2018,17(1):217.
doi: 10.1186/s12936-018-2362-x pmid: 29843734 |
[37] |
Malpartida-Cardenas K, Rodriguez-Manzano J, Yu LS, et al. Allele-specific isothermal amplification method using unmodified self-stabilizing competitive primers[J]. Anal Chem, 2018,90(20):11972-11980.
doi: 10.1021/acs.analchem.8b02416 pmid: 30226760 |
[38] |
Vachot-Ganée L, Khim N, Iannello A, et al. A novel field-based molecular assay to detect validated artemisinin-resistant k13 mutants[J]. Malar J, 2018,17(1):175.
doi: 10.1186/s12936-018-2329-y pmid: 29690890 |
[39] |
Mens PF, van Overmeir C, Bonnet M, et al. Real-time PCR/MCA assay using fluorescence resonance energy transfer for the genotyping of resistance related DHPS-540 mutations in Plasmodium falciparum[J]. Malar J, 2008,7:48.
doi: 10.1186/1475-2875-7-48 pmid: 18346279 |
[40] |
Cruz RE, Shokoples SE, Manage DP, et al. High-throughput genotyping of single nucleotide polymorphisms in the Plasmodium falciparum dhfr gene by asymmetric PCR and melt-curve analysis[J]. J Clin Microbiol, 2010,48(9):3081-3087.
doi: 10.1128/JCM.00634-10 pmid: 20631115 |
[41] |
Kamau E, Alemayehu S, Feghali KC, et al. Development of a TaqMan Allelic Discrimination assay for detection of single nucleotides polymorphisms associated with anti-malarial drug resistance[J]. Malar J, 2012,11:23.
doi: 10.1186/1475-2875-11-23 pmid: 22264294 |
[42] |
Yongkiettrakul S, Kampeera J, Chareanchim W, et al. Simple detection of single nucleotide polymorphism in Plasmodium falciparum by SNP-LAMP assay combined with lateral flow dipstick[J]. Parasitol Int, 2017,66(1):964-971.
doi: 10.1016/j.parint.2016.10.024 pmid: 27816495 |
[43] |
Daniels R, Ndiaye D, Wall M, et al. Rapid, field-deployable method for genotyping and discovery of single-nucleotide polymorphisms associated with drug resistance in Plasmodium falciparum[J]. Antimicrob Agents Chemother, 2012,56(6):2976-2986.
doi: 10.1128/AAC.05737-11 pmid: 22430961 |
[44] |
Bass C, Nikou D, Donnelly MJ, et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods[J]. Malar J, 2007,6:111.
doi: 10.1186/1475-2875-6-111 pmid: 17697325 |
[45] |
Reed MB, Saliba KJ, Caruana SR, et al. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum[J]. Nature, 2000,403(6772):906-909.
pmid: 10706290 |
[46] |
Ibraheem ZO, Abd Majid R, Noor SM, et al. Role of different pfcrt and pfmdr-1 mutations in conferring resistance to antimalaria drugs in Plasmodium falciparum[J]. Malar Res Treat, 2014,2014:950424.
doi: 10.1155/2014/950424 pmid: 25506039 |
[47] |
Purfield A, Nelson A, Laoboonchai A, et al. A new method for detection of pfmdr1 mutations in Plasmodium falciparum DNA using real-time PCR[J]. Malar J, 2004,3:9.
doi: 10.1186/1475-2875-3-9 pmid: 15132750 |
[48] |
Nankoberanyi S, Mbogo GW, LeClair NP, et al. Validation of the ligase detection reaction fluorescent microsphere assay for the detection of Plasmodium falciparum resistance mediating polymorphisms in Uganda[J]. Malar J, 2014,13:95.
doi: 10.1186/1475-2875-13-95 pmid: 24629020 |
[1] | 周瑞敏, 纪鹏慧, 李素华, 杨成运, 刘颖, 钱丹, 邓艳, 鲁德领, 赵玉玲, 赵东阳, 张红卫. 河南省自赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 593-600. |
[2] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[3] | 田斌, 廖瑜, 文岚, 肖芳, 张兵, 申晓君. 长沙市122例输入性恶性疟原虫多药抗性基因1拷贝数变异分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 127-131. |
[4] | 石明丽, 肖波, 江陆斌. 恶性疟原虫var基因的表达调控机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 719-724. |
[5] | 史善美, 陈军虎. 恶性疟原虫RIFIN蛋白的结构和功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2): 249-255. |
[6] | 张苍林, 聂仁华, 徐丹, 吕高伟, 王剑, 杨亚明, 邓艳, 刘言, 周红宁. 中缅边境地区恶性疟原虫Pfcrt、Pfmdr和PfK13基因多态性与体外药物敏感性相关性的分析[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 580-588. |
[7] | 叶升玉, 成依依, 李曼, 周红宁. 我国恶性疟原虫主要药物抗性研究[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 631-636. |
[8] | 周水茂, 涂祖武, 杨燕, 陈芳, 贾西帅. 环介导等温扩增检测恶性疟原虫与其他疟原虫的效果评价[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(4): 423-428. |
[9] | 李仁清, 王小梅, 孙玉兰, 吕燕宁, 窦相峰, 王全意. 宏基因组学二代测序技术在输入性疟疾诊断中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(6): 727-729. |
[10] | 牟畇珊, 李璐杰, 吴银娟, 李学荣. 疟原虫青蒿素耐药分子机制探索[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 636-642. |
[11] | 刘纯, NdoumadiambaALFRED, MounzieGouGNONDA. 胶体金恶性疟原虫检测试剂盒在非洲加蓬的临床应用[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 679-680. |
[12] | 毛强, 裴福全, 岑咏珍, 刘梦然, 张豪, 邓卓晖. 广东省1例输血性恶性疟病例的实验室检测和溯源调查[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5): 529-533. |
[13] | 王志华, 魏春燕, 王恒. 恶性疟原虫非编码RNA的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4): 409-413. |
[14] | 董莹1*,邓艳1,徐艳春1,陈梦妮1,毛祥华1,孙艾明2,王剑1. 不同感染来源恶性疟原虫裂殖子表面蛋白3基因多态性分析及抗原表位预测[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(3): 3-210-217. |
[15] | 杨成运, 李素华, 张雅兰, 周瑞敏, 刘颖, 钱丹, 赵玉玲, 许汴利, 张红卫, 邓艳. 河南省输入性恶性疟原虫多药抗性基因1和K13基因的突变分析[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(2): 97-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||