[1] |
World Health Organization. World malaria report 2022[R]. Geneva: WHO, 2022: 22-23.
|
[2] |
Feng J, Zhang L, Xia ZG, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 421-428. (in Chinese)
|
|
(丰俊, 张丽, 夏志贵, 等. 中国消除疟疾:重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421-428.)
|
[3] |
Zhang L, Yi BY, Xia ZG, et al. Epidemiological characteristics of malaria in China, 2021[J]. Chin J Parasitol Parasit Dis, 2022, 40(2): 135-139. (in Chinese)
|
|
(张丽, 易博禹, 夏志贵, 等. 2021年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 135-139.)
|
[4] |
Zhang L, Yi BY, Yin JH, et al. Epidemiological characteristics of malaria in China, 2022[J]. Chin J Parasitol Parasit Dis, 2023, 41(2): 137-141. (in Chinese)
|
|
(张丽, 易博禹, 尹建海, 等. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 137-141.)
|
[5] |
Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria[J]. Nature, 2014, 505(7481): 50-55.
doi: 10.1038/nature12876
|
[6] |
Ross LS, Dhingra SK, Mok S, et al. Emerging Southeast Asian Pfcrt mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine[J]. Nat Commun, 2018, 9(1): 3314.
doi: 10.1038/s41467-018-05652-0
|
[7] |
Somé AF, Séré YY, Dokomajilar C, et al. Selection of known Plasmodium falciparum resistance-mediating polymorphisms by artemether-lumefantrine and amodiaquine-sulfadoxine-pyrimethamine but not dihydroartemisinin-piperaquine in Burkina Faso[J]. Antimicrob Agents Chemother, 2010, 54(5): 1949-1954.
doi: 10.1128/AAC.01413-09
|
[8] |
McCollum AM, Poe AC, Hamel M, et al. Antifolate resistance in Plasmodium falciparum: multiple origins and identification of novel dhfr alleles[J]. J Infect Dis, 2006, 194(2): 189-197.
pmid: 16779725
|
[9] |
Vinayak S, Alam MT, Mixson-Hayden T, et al. Origin and evolution of sulfadoxine resistant Plasmodium falciparum[J]. PLoS Pathog, 2010, 6(3): e1000830.
doi: 10.1371/journal.ppat.1000830
|
[10] |
Zhao DY, Zhang HW, Ji PH, et al. Surveillance of antimalarial drug-resistance genes in imported Plasmodium falciparum isolates from Nigeria in Henan, China, 2012—2019[J]. Front Cell Infect Microbiol, 2021, 11: 644576.
doi: 10.3389/fcimb.2021.644576
|
[11] |
Flegg JA, Metcalf CJE, Gharbi M, et al. Trends in antimalarial drug use in Africa[J]. Am J Trop Med Hyg, 2013, 89(5): 857-865.
doi: 10.4269/ajtmh.13-0129
|
[12] |
Dondorp AM, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2009, 361(5): 455-467.
doi: 10.1056/NEJMoa0808859
|
[13] |
Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria[J]. N Engl J Med, 2014, 371(5): 411-423.
doi: 10.1056/NEJMoa1314981
|
[14] |
Uwimana A, Legrand E, Stokes BH, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda[J]. Nat Med, 2020, 26(10): 1602-1608.
doi: 10.1038/s41591-020-1005-2
|
[15] |
World Health Organization. Report on antimalarial drug efficacy, resistance and response[R]. Geneva: WHO, 2020: 22-24.
|
[16] |
Taylor SM, Parobek CM, DeConti DK, et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study[J]. J Infect Dis, 2015, 211(5): 680-688.
doi: 10.1093/infdis/jiu467
pmid: 25180240
|
[17] |
Otienoburu SD, Suay I, Garcia S, et al. An online mapping database of molecular markers of drug resistance in Plasmodium falciparum: the ACT Partner Drug Molecular Surveyor[J]. Malar J, 2019, 18(1): 12.
doi: 10.1186/s12936-019-2645-x
|
[18] |
Mwanza S, Joshi S, Nambozi M, et al. The return of chloroquine-susceptible Plasmodium falciparum malaria in Zambia[J]. Malar J, 2016, 15(1): 584.
doi: 10.1186/s12936-016-1637-3
|
[19] |
Ndam NT, Basco LK, Ngane VF, et al. Reemergence of chloroquine-sensitive pfcrt K76 Plasmodium falciparum genotype in southeastern Cameroon[J]. Malar J, 2017, 16(1): 130.
doi: 10.1186/s12936-017-1783-2
|
[20] |
Nie GK, Xu C, Wei QK, et al. Analysis of drug-resistant gene polymorphisms in Plasmodium falciparum imported from Equatorial Guinea to Shandong Province in 2015 and 2016[J]. Chin J Schisto Control, 2020, 32(6): 612-617.
|
|
(聂广馗, 徐超, 魏庆宽, 等. 2015—2016年山东省由赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国血吸虫病防治杂志, 2020, 32(6): 612-617.)
|
[21] |
He JQ, Chen JT, Li JH, et al. Drug-resistant gene polymorphisms in Plasmodium falciparum isolated from Bioko Island, Equatorial Guinea in 2018 and 2019[J]. Chin J Schisto Control, 2021, 33(4): 396-400.
|
|
(何金泉, 陈江涛, 李敬河, 等. 2018—2019年赤道几内亚Bioko岛恶性疟原虫抗药性基因多态性分析[J]. 中国血吸虫病防治杂志, 2021, 33(4): 396-400.)
|
[22] |
Duraisingh MT, Cowman AF. Contribution of the Pfmdr1 gene to antimalarial drug-resistance[J]. Acta Trop, 2005, 94(3): 181-190.
pmid: 15876420
|
[23] |
Gupta H, Macete E, Bulo H, et al. Drug-resistant polymorphisms and copy numbers in Plasmodium falciparum, Mozambique, 2015[J]. Emerg Infect Dis, 2018, 24(1): 40-48.
doi: 10.3201/eid2401.170864
|
[24] |
Berzosa P, Molina de la Fuente I, Ta-Tang TH, et al. Temporal evolution of the resistance genotypes of Plasmodium falciparum in isolates from Equatorial Guinea during 20 years (1999 to 2019)[J]. Malar J, 2021, 20(1): 463.
doi: 10.1186/s12936-021-04000-w
|
[25] |
Adegbola AJ, Ijarotimi OA, Ubom AE, et al. A snapshot of the prevalence of dihydropteroate synthase-431V mutation and other sulfadoxine-pyrimethamine resistance markers in Plasmodium falciparum isolates in Nigeria[J]. Malar J, 2023, 22(1): 71.
doi: 10.1186/s12936-023-04487-5
|
[26] |
Naidoo I, Roper C. Mapping ‘partially resistant’, ‘fully resistant’, and ‘super resistant’ malaria[J]. Trends Parasitol, 2013, 29(10): 505-515.
doi: 10.1016/j.pt.2013.08.002
|
[27] |
Picot S, Olliaro P, de Monbrison F, et al. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria[J]. Malar J, 2009, 8: 89.
doi: 10.1186/1475-2875-8-89
|