[1] | WHO. World malaria report 2022[R]. Geneva: World Health Organization, 2022: 1-25. | [2] | RTS, S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial[J]. Lancet, 2015, 386(9988): 31-45. | [3] | Imwong M, Dhorda M, Myo Tun K, et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study[J]. Lancet Infect Dis, 2020, 20(12): 1470-1480. | [4] | Balikagala B, Fukuda N, Ikeda M, et al. Evidence of artemisinin-resistant malaria in Africa[J]. N Engl J Med, 2021, 385(13): 1163-1171. | [5] | Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016, 167(3): 610-624. | [6] | ArjenM, Dondorp, MD, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial[J]. Lancet, 2010, 376(9753): 1647-1657. | [7] | Dondorp A, Nosten F, Stepniewska K, et al. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial[J]. Lancet, 2005, 366(9487): 717-725. | [8] | Song XN, Wei W, Cheng WJ, et al. Cerebral malaria induced by Plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment[J]. Front Cell Infect Microbiol, 2022, 12: 939532. | [9] | Riggle BA, Miller LH, Pierce SK. Desperately seeking therapies for cerebral malaria[J]. J Immunol, 2020, 204(2): 327-334. | [10] | Dorovini-Zis K, Schmidt K, Huynh H, et al. The neuropathology of fatal cerebral malaria in Malawian children[J]. Am J Pathol, 2011, 178(5): 2146-2158. | [11] | Ju G, Wu SX. Neurobiology[M]. Xi’an: Fourth Military Medical University Publish House, 2015: 268-279. (in Chinese) | | (鞠躬, 武胜昔. 神经生物学[M]. 西安: 第四军医大学出版社, 2015: 268-279.) | [12] | Pongponratn E, Aikawa M, Punpoowong B, et al. Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study[J]. Am J Trop Med Hyg, 1991, 44(2): 168-175. | [13] | Looker O, Blanch AJ, Liu BY, et al. The knob protein KAHRP assembles into a ring-shaped structure that underpins virulence complex assembly[J]. PLoS Pathog, 2019, 15(5): e1007761. | [14] | Smith JD, Rowe JA, Higgins MK, et al. Malaria’s deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes[J]. Cell Microbiol, 2013, 15(12): 1976-1983. | [15] | Gazzinelli RT, Kalantari P, Fitzgerald KA, et al. Innate sensing of malaria parasites[J]. Nat Rev Immunol, 2014, 14(11): 744-757. | [16] | Swanson PA, Hart GT, Russo MV, et al. CD8+T cells induce fatal brainstem pathology during cerebral malaria via luminal antigen-specific engagement of brain vasculature[J]. PLoS Pathog, 2016, 12(12): e1006022. | [17] | Howland SW, Poh CM, Gun SY, et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria[J]. EMBO Mol Med, 2013, 5(7): 984-999. | [18] | Sahu PK, Duffy FJ, Dankwa S, et al. Determinants of brain swelling in pediatric and adult cerebral malaria[J]. JCI Insight, 2021, 6(18). DOI: e145823. | [19] | Moxon CA, Chisala NV, Mzikamanda R, et al. Laboratory evidence of disseminated intravascular coagulation is associated with a fatal outcome in children with cerebral malaria despite an absence of clinically evident thrombosis or bleeding[J]. J Thromb Haemost, 2015, 13(9): 1653-1664. | [20] | Francischetti IMB. Does activation of the blood coagulation cascade have a role in malaria pathogenesis?[J]. Trends Parasitol, 2008, 24(6): 258-263. | [21] | Pain A, Ferguson DJ, Kai O, et al. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria[J]. Proc Natl Acad Sci USA, 2001, 98(4): 1805-1810. | [22] | Higgins SJ, Purcell LA, Silver KL, et al. Dysregulation of angiopoietin-1 plays a mechanistic role in the pathogenesis of cerebral malaria[J]. Sci Transl Med, 2016, 8(358): 358ra128. | [23] | Gramaglia I, Sobolewski P, Meays D, et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria[J]. Nat Med, 2006, 12(12): 1417-1422. | [24] | Bridges DJ, Bunn J, van Mourik JA, et al. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings[J]. Blood, 2010, 115(7): 1472-1474. | [25] | Potchen MJ, Kampondeni SD, Seydel KB, et al. 1.5 tesla magnetic resonance imaging to investigate potential etiologies of brain swelling in pediatric cerebral malaria[J]. Am J Trop Med Hyg, 2018, 98(2): 497-504. | [26] | Andoh NE, Gyan BA. The potential roles of glial cells in the neuropathogenesis of cerebral malaria[J]. Front Cell Infect Microbiol, 2021, 11: 741370. | [27] | WHO. WHO Guidelines for malaria[R]. Geneva: World Health Organization, 2023: 188-189. | [28] | Expert Group of National Center for Infectious Diseases. Guidelines for malaria diagnosis and treatment[J]. Chin J ParasitolParasit Dis, 2022, 40(4): 419-427. (in Chinese) | | (国家传染病医学中心撰写组. 疟疾诊疗指南[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 419-427.) | [29] | Langfitt JT, McDermott MP, Brim R, et al. Neurodevelopmental impairments 1 year after cerebral malaria[J]. Pediatrics, 2019, 143(2): e20181026. | [30] | Huang YY, Yao SJ, Bian ZF, et al. Immunoprotective effect of dexamethasone on experimental cerebral malaria in mice[J]. Chin J Parasitol Parasit Dis, 2022, 40(4): 446-453. (in Chinese) | | (黄媛媛, 姚世杰, 卞致芳, 等. 地塞米松对实验性脑型疟小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 446-453.) | [31] | Warrell DA, Looareesuwan S, Warrell MJ, et al. Dexamethasone proves deleterious in cerebral malaria: a double-blind trial in 100 comatose patients[J]. N Engl J Med, 1982, 306(6): 313-319. | [32] | Stuehr DJ. Mammalian nitric oxide synthases[J]. Biochim Biophys Acta BBA Bioenerg, 1999, 1411(2/3): 217-230. | [33] | Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide[J]. Proc Natl Acad Sci USA, 1987, 84(24): 9265-9269. | [34] | Freedman JE, Loscalzo J. Nitric oxide and its relationship to thrombotic disorders[J]. J Thromb Haemost, 2003, 1(6): 1183-1188. | [35] | Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion[J]. PLoS One, 1991, 88(11): 4651-4655. | [36] | Matsushita K, Morrell CN, Cambien B, et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor[J]. Cell, 2003, 115(2): 139-150. | [37] | Crawford JH, Isbell TS, Huang Z, et al. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation[J]. Blood, 2006, 107(2): 566-574. | [38] | Modin A, Bj?rne H, Herulf M, et al. Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation[J]. Acta Physiol Scand, 2001, 171(1): 9-16. | [39] | Weinberg JB, Yeo TW, Mukemba JP, et al. Dimethylarginines: Endogenous inhibitors of nitric oxide synthesis in children with falciparum malaria[J]. J Infect Dis, 2014, 210(6): 913-922. | [40] | Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension[J]. J Clin Invest, 2003, 111(8): 1201-1209. | [41] | Ayajiki K, Kindermann M, Hecker M, et al. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells[J]. Circ Res, 1996, 78(5): 750-758. | [42] | Yeo TW, Weinberg JB, Lampah DA, et al. Glycocalyx breakdown is associated with severe disease and fatal outcome in Plasmodium falciparum malaria[J]. Clin Infect Dis, 2019, 69(10): 1712-1720. | [43] | Hawkes MT, Conroy AL, Opoka RO, et al. Inhaled nitric oxide as adjunctive therapy for severe malaria: a randomized controlled trial[J]. Malar J, 2015, 14: 421. | [44] | Mwanga-Amumpaire J, Carroll RW, Baudin E, et al. Inhaled nitric oxide as an adjunctive treatment for cerebral malaria in children: aphase II randomized open-label clinical trial[J]. Open Forum Infect Dis, 2015, 2(3): ofv111. | [45] | Zanini GM, Martins YC, Cabrales P, et al. S-nitrosoglutathione prevents experimental cerebral malaria[J]. J Neuroimmune Pharmacol, 2012, 7(2): 477-487. | [46] | Orjuela-Sánchez P, Ong PK, Zanini GM, et al. Transdermal glyceryl trinitrate as an effective adjunctive treatment with artemether for late-stage experimental cerebral malaria[J]. Antimicrob Agents Chemother, 2013, 57(11): 5462-5471. | [47] | Martins YC, Zanini GM, Frangos JA, et al. Efficacy of different nitric oxide-based strategies in preventing experimental cerebral malaria by Plasmodium berghei ANKA[J]. PLoS One, 2012, 7(2): e32048. | [48] | Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease[J]. Physiol Rev, 2007, 87(1): 315-424. | [49] | Yeo TW, Lampah DA, Rooslamiati I, et al. A randomized pilot study of L-arginine infusion in severe falciparum malaria: preliminary safety, efficacy and pharmacokinetics[J]. PLoS One, 2013, 8(7): e69587. | [50] | Gramaglia I, Velez J, Chang YS, et al. Citrulline protects mice from experimental cerebral malaria by ameliorating hypoargininemia, urea cycle changes and vascular leak[J]. PLoS One, 2019, 14(3): e0213428. | [51] | Ong PK, Melchior B, Martins YC, et al. Nitric oxide synthase dysfunction contributes to impaired cerebroarteriolar reactivity in experimental cerebral malaria[J]. PLoS Pathog, 2013, 9(6): e1003444. | [52] | Yen W, Cai B, Yang JL, et al. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo[J]. PLoS One, 2015, 10(1): e0117133. | [53] | Hempel C, Sporring J, Kurtzhals JAL. Experimental cerebral malaria is associated with profound loss of both glycan and protein components of the endothelial glycocalyx[J]. FASEB J, 2019, 33(2): 2058-2071. | [54] | Jeansson M, Gawlik A, Anderson G, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury[J]. J Clin Invest, 2011, 121(6): 2278-2289. | [55] | Kim M, Allen B, Korhonen EA, et al. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation[J]. J Clin Invest, 2016, 126(9): 3511-3525. | [56] | Lovegrove FE, Tangpukdee N, Opoka RO, et al. Serum angiopoietin-1 and-2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children[J]. PLoS One, 2009, 4(3): e4912. | [57] | Conroy AL, Lafferty EI, Lovegrove FE, et al. Whole blood angiopoietin-1 and-2 levels discriminate cerebral and severe (non-cerebral) malaria from uncomplicated malaria[J]. Malar J, 2009, 8(1): 1-7. | [58] | Conroy AL, Hawkes M, McDonald CR, et al. Host biomarkers are associated with response to therapy and long-term mortality in pediatric severe malaria[J]. Open Forum Infect Dis, 2016, 3(3): ofw134. | [59] | Jain V, Lucchi NW, Wilson NO, et al. Plasma levels of angiopoietin-1 and-2 predict cerebral malaria outcome in Central India[J]. Malar J, 2011, 10(1): 1-7. | [60] | Han S, Lee SJ, Kim KE, et al. Amelioration of sepsis by TIE2 activation-induced vascular protection[J]. Sci Transl Med, 2016, 8(335): eaad9260. | [61] | Silver KL, Kain KC, Liles WC. Endothelial activation and dysregulation: a common pathway to organ injury in infectious diseases associated with systemic inflammation[J]. Drug Discov Today Dis Mech, 2007, 4(4): 215-222. | [62] | Sadler JE. Biochemistry and genetics of von Willebrand factor[J]. Annu Rev Biochem, 1998, 67: 395-424. | [63] | Dong JF, Moake JL, Nolasco L, et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions[J]. Blood, 2002, 100(12): 4033-4039. | [64] | Pendu R, Terraube V, Christophe OD, et al. P-selectin glycoprotein ligand 1 and β2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor[J]. Blood, 2006, 108(12): 3746-3752. | [65] | Larkin D, de Laat B, Jenkins PV, et al. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition[J]. PLoS Pathog, 2009, 5(3): e1000349. | [66] | L?wenberg EC, Charunwatthana P, Cohen S, et al. Severe malaria is associated with a deficiency of von Willebrand factor cleaving protease, ADAMTS13[J]. Thromb Haemost, 2010, 103(1): 181-187. | [67] | Graham SM, Chen JM, Chung DW, et al. Endothelial activation, haemostasis and thrombosis biomarkers in Ugandan children with severe malaria participating in a clinical trial[J]. Malar J, 2016, 15: 56. | [68] | de Mast Q, Groot E, Lenting PJ, et al. Thrombocytopenia and release of activated von Willebrand Factor during early Plasmodium falciparum malaria[J]. J Infect Dis, 2007, 196(4): 622-628. | [69] | O’Regan N, Gegenbauer K, O'Sullivan JM, et al. A novel role for von Willebrand factor in the pathogenesis of experimental cerebral malaria[J]. Blood, 2016, 127(9): 1192-1201. | [70] | Kraisin S, Martinod K, Desender L, et al. Von Willebrand factor increases in experimental cerebral malaria but is not essential for late-stage pathogenesis in mice[J]. J Thromb Haemost, 2020, 18(9): 2377-2390. | [71] | Gul S, Ribeiro-Gomes FL, Moreira AS, et al. Whole blood transfusion improves vascular integrity and increases survival in artemether-treated experimental cerebral malaria[J]. Sci Rep, 2021, 11(1): 12077. | [72] | Zodda D, Procopio G, Hewitt K, et al. Severe malaria presenting to the ED: a collaborative approach utilizing exchange transfusion and artesunate[J]. Am J Emerg Med, 2018, 36(6): 1126. e1-1126.e4. | [73] | Schiviz A, Wuersch K, Piskernik C, et al. A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13[J]. Blood, 2012, 119(25): 6128-6135. | [74] | Luo JC, Xiong Y, Han XF, et al. VEGF non-angiogenic functions in adult organ homeostasis: therapeutic implications[J]. J Mol Med (Berl), 2011, 89(7): 635-645. | [75] | Jain V, Armah HB, Tongren JE, et al. Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India[J]. Malar J, 2008, 7: 83. | [76] | Conroy AL, Phiri H, Hawkes M, et al. Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case-control study[J]. PLoS One, 2010, 5(12): e15291. | [77] | Yeo TW, Lampah DA, Gitawati R, et al. Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria[J]. Proc Natl Acad Sci USA, 2008, 105(44): 17097-17102. | [78] | Raacke M, Kerr A, D?rpinghaus M, et al. Altered cytokine response of human brain endothelial cells after stimulation with malaria patient plasma[J]. Cells, 2021, 10(7): 1656. | [79] | Furuta T, Kimura M, Watanabe N. Elevated levels of vascular endothelial growth factor (VEGF) and soluble vascular endothelial growth factor receptor (VEGFR)-2 in human malaria[J]. Am J Trop Med Hyg, 2010, 82(1): 136-139. | [80] | Kim YW, Byzova TV. Oxidative stress in angiogenesis and vascular disease[J]. Blood, 2014, 123(5): 625-631. | [81] | Greenberg DA, Jin KL. From angiogenesis to neuropathology[J]. Nature, 2005, 438(7070): 954-959. | [82] | Canavese M, Crisanti A. Vascular endothelial growth factor (VEGF) and lovastatin suppress the inflammatory response to Plasmodium berghei infection and protect against experimental cerebral malaria[J]. Pathog Glob Health, 2015, 109(6): 266-274. | [83] | Hempel C, Hoyer N, Kildemoes A, et al. Systemic and cerebral vascular endothelial growth factor levels increase in murine cerebral malaria along with increased calpain and caspase activity and can be reduced by erythropoietin treatment[J]. Front Immunol, 2014, 5: 291. | [84] | Maines MD. The heme oxygenase system: a regulator of second messenger gases[J]. Annu Rev Pharmacol Toxicol, 1997, 37: 517-554. | [85] | Choi YK, Kim YM. Beneficial and detrimental roles of heme oxygenase-1 in the neurovascular system[J]. Int J Mol Sci, 2022, 23(13): 7041. | [86] | Pamplona A, Ferreira A, Balla J, et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria[J]. Nat Med, 2007, 13(6): 703-710. | [87] | Craig AG, Grau GE, Janse C, et al. The role of animal models for research on severe malaria[J]. PLoS Pathog, 2012, 8(2): e1002401. | [88] | Smith JD, Subramanian G, Gamain B, et al. Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family[J]. Mol Biochem Parasitol, 2000, 110(2): 293-310. | [89] | Ochola LB, Siddondo BR, Ocholla H, et al. Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome[J]. PLoS One, 2011, 6(3): e14741. | [90] | Tuikue Ndam N, Moussiliou A, Lavstsen T, et al. Parasites causing cerebral falciparum malaria bind multiple endothelial receptors and express EPCR and ICAM-1-binding PfEMP1[J]. J Infect Dis, 2017, 215(12): 1918-1925. | [91] | Turner L, Lavstsen T, Berger SS, et al. Severe malaria is associated with parasite binding to endothelial protein C receptor[J]. Nature, 2013, 498(7455): 502-505. | [92] | Petersen JEV, Bouwens EAM, Tamayo I, et al. Protein C system defects inflicted by the malaria parasite protein PfEMP1 can be overcome by a soluble EPCR variant[J]. Thromb Haemost, 2015, 114(5): 1038-1048. | [93] | Frank, Lennartz. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria[J]. Cell Host Microbe, 2017, 21(3): 403-414. | [94] | Mustaffa KMF, Storm J, Whittaker M, et al. In vitro inhibition and reversal of Plasmodium falciparum cytoadherence to endothelium by monoclonal antibodies to ICAM-1 and CD36[J]. Malar J, 2017, 16(1): 279. | [95] | Messina V, Loizzo S, Travaglione S, et al. The bacterial protein CNF1 as a new strategy against Plasmodium falciparum cytoadherence[J]. PLoS One, 2019, 14(3): e0213529. | [96] | Bull PC, Lowe BS, Kortok M, et al. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria[J]. Nat Med, 1998, 4(3): 358-360. | [97] | Lennartz F, Bengtsson A, Olsen RW, et al. Mapping the binding site of a cross-reactive Plasmodium falciparum PfEMP1 monoclonal antibody inhibitory of ICAM-1 binding[J]. J Immunol, 2015, 195(7): 3273-3283. | [98] | Lau CK, Turner L, Jespersen JS, et al. Structural conservation despite huge sequence diversity allows EPCR binding by the PfEMP1 family implicated in severe childhood malaria[J]. Cell Host Microbe, 2015, 17(1): 118-129. | [99] | Gillrie MR, Renaux B, Russell-Goldman E, et al. Thrombin cleavage of Plasmodium falciparum erythrocyte membrane protein 1 inhibits cytoadherence[J]. mBio, 2016, 7(5): e01120-16. | [100] | Vogt AM, Barragan A, Chen QJ, et al. Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1α domain of PfEMP1[J]. Blood, 2003, 101(6): 2405-2411. | [101] | Lantero E, Aláez-Versón CR, Romero P, et al. Repurposing heparin as antimalarial: evaluation of multiple modifications toward in vivo application[J]. Pharmaceutics, 2020, 12(9): 825. | [102] | Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis[J]. Front Cell Infect Microbiol, 2017, 7: 324. | [103] | Riggle BA, Manglani M, Maric D, et al. CD8+ T cells target cerebrovasculature in children with cerebral malaria[J]. J Clin Investig, 2020, 130(3): 1128-1138. | [104] | van Hensbroek MB, Palmer A, Onyiorah E, et al. The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria[J]. J Infect Dis, 1996, 174(5): 1091-1097. | [105] | Looareesuwan S, Sjostrom L, Krudsood S, et al. Polyclonal anti-tumor necrosis factor-alpha Fab used as an ancillary treatment for severe malaria[J]. Am J Trop Med Hyg, 1999, 61(1): 26-33. | [106] | Jin JW, Fan XL, del Cid-Pellitero E, et al. Development of an α-synuclein knockdown peptide and evaluation of its efficacy in Parkinson’s disease models[J]. Commun Biol, 2021, 4: 232. | [107] | Niewold P, Cohen A, van Vreden C, et al. Experimental severe malaria is resolved by targeting newly-identified monocyte subsets using immune-modifying particles combined with artesunate[J]. Commun Biol, 2018, 1: 227. | [108] | Van Den Ham KM, Smith LK, Richer MJ, et al. Protein tyrosine phosphatase inhibition prevents experimental cerebral malaria by precluding CXCR3 expression on T cells[J]. Sci Rep, 2017, 7(1): 5478. | [109] | Gordon EB, Hart GT, Tran TM, et al. Targeting glutamine metabolism rescues mice from late-stage cerebral malaria[J]. Proc Natl Acad Sci USA, 2015, 112(42): 13075-13080. | [110] | Wang J, Li Y, Shen Y, et al. PDL1 fusion protein protects against experimental cerebral malaria via repressing over-reactive CD8+ T cell responses[J]. Front Immunol, 2018, 9: 3157. | [111] | Jiang XH, Chen LN, Zheng ZY, et al. Synergistic effect of combined artesunate and tetramethylpyrazine in experimental cerebral malaria[J]. ACS Infect Dis, 2020, 6(9): 2400-2409. | [112] | Zheng ZY, Liu H, Wang X, et al. Artesunate and tetramethylpyrazine exert effects on experimental cerebral malaria in a mechanism of protein S-nitrosylation[J]. ACS Infect Dis, 2021, 7(10): 2836-2849. | [113] | Mukherjee S, Ray G, Saha B, et al. Oral therapy using a combination of nanotized antimalarials and immunomodulatory molecules reduces inflammation and prevents parasite induced pathology in the brain and spleen of P. berghei ANKA infected C57BL/6 mice[J]. Front Immunol, 2022, 12: 819469. | [114] | Bernabeu M, Howard C, Zheng Y, et al. Bioengineered 3D microvessels for investigating Plasmodium falciparum pathogenesis[J]. Trends Parasitol, 2021, 37(5): 401-413. | [115] | Harbuzariu A, Pitts S, Cespedes JC, et al. Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids[J]. Sci Rep, 2019, 9(1): 19162. | [116] | Beare NAV, Taylor TE, Harding SP, et al. Malarial retinopathy: a newly established diagnostic sign in severe malaria[J]. Am J Trop Med Hyg, 2006, 75(5): 790-797. | [117] | Wilson NO, Jain V, Roberts CE, et al. CXCL4 and CXCL10 predict risk of fatal cerebral malaria[J]. Dis Markers, 2011, 30(1): 39-49. |
|