中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (3): 361-373.doi: 10.12140/j.issn.1000-7423.2023.03.016
曹伟1(), 王一2, 张熙致3, 仝国栋2, 杨超2, 沈燕2, 赵亚2,*(
)
收稿日期:
2022-12-08
修回日期:
2023-04-18
出版日期:
2023-06-30
发布日期:
2023-06-25
通讯作者:
*赵亚(1972-),男,博士,教授,从事疟原虫感染与免疫相关研究。E-mail: zhaoya@fmmu.edu.cn
作者简介:
曹伟(1999-),男,本科生,从事疟原虫感染与免疫相关研究。E-mail:2692148901@qq.com
基金资助:
CAO Wei1(), WANG Yi2, ZHANG Xizhi3, TONG Guodong2, YANG Chao2, SHEN Yan2, ZHAO Ya2,*(
)
Received:
2022-12-08
Revised:
2023-04-18
Online:
2023-06-30
Published:
2023-06-25
Contact:
*E-mail: Supported by:
摘要:
脑型疟是恶性疟原虫感染的主要致死性并发症之一,发病机制尚不完全清楚。但目前的研究多认为,被疟原虫感染的红细胞黏附脑微血管内皮细胞引发的脑部微循环阻塞,以及由此产生的脑血管内皮细胞活化和炎细胞浸润共同导致的免疫病理损伤,协同造成血脑屏障破坏和脑水肿,是脑型疟最主要的发病机制。因此,脑血管内皮细胞活化、受损的程度是决定脑型疟进展、结局的关键因素之一。现有临床研究证明,即便给予积极有效的青蒿素类药物杀虫治疗也不能完全缓解脑型疟症状和可能继发的神经组织损伤,而联用糖皮质激素抗炎治疗副作用大。脑型疟辅助治疗研究涉及其发病机制的多个环节,但由于恶性疟原虫生活史特点和高度抗原变异等诸多因素影响,现有辅助治疗方法均未获预期疗效,亟待探索脑型疟辅助治疗新方法。本文主要以保护脑血管内皮细胞为靶点,从提升内皮细胞的自我保护功能和抑制其他炎细胞或有害因子2个方面对内皮细胞损伤的脑型疟辅助治疗研究进展进行综述。
中图分类号:
曹伟, 王一, 张熙致, 仝国栋, 杨超, 沈燕, 赵亚. 脑型疟辅助治疗研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 361-373.
CAO Wei, WANG Yi, ZHANG Xizhi, TONG Guodong, YANG Chao, SHEN Yan, ZHAO Ya. Research progress in adjunctive therapy of cerebral malaria[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(3): 361-373.
表1
本文中提及的以脑血管内皮细胞为靶点的脑型疟辅助治疗
作用靶点 | 作用机制 | 制剂 | 研究对象 | 辅助治疗效果 | 参考文献 |
---|---|---|---|---|---|
NO | 增加外源性NO | NO气体 | 重症疟疾患者 | 联用青蒿琥酯,未改善血脑屏障受损情况 | [ |
NO | 增加外源性NO | NO供体二亚丙基三胺壬酸酯 | 实验性脑型疟小鼠 | 单独注射,血压明显下降 | [ |
NO | 增加外源性NO | NO供体S-亚硝基谷胱甘肽 | 实验性脑型疟小鼠 | 单独注射,保护了血脑屏障 | [ |
NO | 增加外源性NO | 三硝酸甘油透皮贴片 | 实验性脑型疟小鼠 | 联用蒿甲醚提高生存率 | [ |
NO | 增加外源性NO的同时增强NO介导的下游通路 | 西地那非和NO供体二亚丙基三胺壬酸酯 | 实验性脑型疟小鼠 | 单独注射,保护了血脑屏障 | [ |
NO | 补充eNOS的底物 | L-精氨酸 | 重症疟疾患者 | 联用青蒿琥酯,未改善血脑屏障受损情况 | [ |
NO | 补充eNOS的底物,抑制精氨酸酶活性,减少超氧化物 | 瓜氨酸、聚乙二醇化超氧化物歧化酶、聚乙二醇化过氧化氢酶 | 实验性脑型疟小鼠 | 联用奎宁,提高了生存率 | [ |
NO | 保护内皮细胞表面的糖萼结构以恢复eNOS的活性 | 抗凝血酶-3 | 实验性脑型疟小鼠 | 单独注射,保护了血脑屏障 | [ |
NO | 促进eNOS的活化 | 川芎嗪 | 实验性脑型疟小鼠 | 联用青蒿琥酯提高生存率 | [ |
Ang/Tie-2轴 | 提高Ang-1水平 | BowAng1 | 实验性脑型疟小鼠 | 联用青蒿琥酯提高生存率 | [ |
Ang/Tie-2轴 | 拮抗Ang-2作用 | REGN910或L1-10 | 实验性脑型疟小鼠 | 单独注射,未提高生存率 | [ |
vWF | 直接补充ADAMTS-13、减少vWF水平 | 输注全血或血液置换 | 实验性脑型疟小鼠、脑型疟患者 | 对于实验性脑型疟小鼠,联用蒿甲醚,进一步提高了生存率;对于患者,有安全有效的临床案例 | [ |
VEGF | 疾病进展早期提高VEGF对血管的保护作用 | 洛伐他汀和VEGF-164 | 实验性脑型疟小鼠 | 单独注射,保护了血脑屏障 | [ |
VEGF | 疾病进展到一定阶段降低VEGF对血管的不利作用 | 促红细胞生成素 | 实验性脑型疟小鼠 | 单独注射,保护了血脑屏障 | [ |
HO-1 | 在疾病早期诱导HO-1的表达 | 钴原卟啉IX或脂氧素A4 | 实验性脑型疟小鼠 | 感染前注射,保护了血脑屏障 | [ |
感染红细胞的黏附 | 抑制内皮细胞表面的EPCR与感染红细胞结合 | 可溶性EPCR | 体外细胞实验 | 减少了感染红细胞(表达的PfEMP1蛋白包含CIDRα1.1结构域)对内皮细胞的黏附 | [ |
感染红细胞的黏附 | 阻断内皮细胞表面的CD36、ICAM-1 | 抗CD36抗体FA6-152和抗ICAM-1抗体15.2 | 体外细胞实验 | 抗体可阻断感染红细胞对内皮细胞的黏附,但对不同疟原虫株感染的红细胞效果不同 | [ |
感染红细胞的黏附 | 改变内皮细胞的肌动蛋白细胞骨架 | 大肠杆菌细胞毒性坏死性因子1 | 体外细胞实验 | 可预防感染红细胞对内皮细胞的黏附并使已黏附的感染红细胞脱落 | [ |
感染红细胞的黏附 | 破坏PfEMP1的DBLδ1结构域 | R67A-凝血酶或水蛭素 | 体外细胞实验 | 裂解PfEMP1的DBLδ1结构域中相对保守的序列,阻断了感染红细胞对内皮细胞的黏附 | [ |
感染红细胞的黏附 | 破坏PfEMP1 的DBL1α结构域 | 肝素及其衍生物 | 体外细胞实验 | 可与PfEMP1蛋白的DBL1α结构域结合,抑制了感染红细胞对内皮细胞的黏附 | [ |
促炎细胞因子 | 拮抗TNF-α的作用 | 抗TNF-α抗体B-C7 | 脑型疟患儿 | 联用蒿甲醚或奎宁,未进一步提高生存率 | [ |
促炎细胞因子 | 拮抗TNF-α的作用 | 多克隆抗TNF-α抗体Fab片段CytoTAb | 重症疟疾患者 | 联用青蒿琥酯和甲氟喹,患者临床症状缓解更快,疟原虫清除时间延长 | [ |
促炎细胞因子 | 拮抗IFN-γ、TNF-α等多种促炎细胞因子的作用 | 姜黄素、穿心莲内酯等 | 实验性脑型疟小鼠 | 联用青蒿素类药物,阻止了实验性脑型疟进展 | [ |
过度活化的免疫细胞 | 减少Ly6Clo单核细胞向炎症灶的浸润 | 经免疫修饰的微粒 | 实验性脑型疟小鼠 | 联用青蒿琥酯,进一步提高了生存率 | [ |
过度活化的免疫细胞 | 减少T细胞向炎症灶的浸润 | bpV(phen) | 实验性脑型疟小鼠 | 感染前注射,保护了血脑屏障 | [ |
过度活化的免疫细胞 | 抑制CD8+ T细胞脱颗粒 | 6-重氮-5-氧代-正亮氨酸 | 实验性脑型疟小鼠 | 单独注射,保护了血脑屏障 | [ |
过度活化的免疫细胞 | 适度强化CD8+T表面PD-1受体介导的免疫抑制信号 | PDL1-IgG1Fc融合蛋白 | 实验性脑型疟小鼠 | 单独注射,保护了血脑屏障 | [ |
[1] | WHO. World malaria report 2022[R]. Geneva: World Health Organization, 2022: 1-25. |
[2] |
RTS, S Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial[J]. Lancet, 2015, 386(9988): 31-45.
doi: 10.1016/S0140-6736(15)60721-8 |
[3] |
Imwong M, Dhorda M, Myo Tun K, et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study[J]. Lancet Infect Dis, 2020, 20(12): 1470-1480.
doi: 10.1016/S1473-3099(20)30228-0 pmid: 32679084 |
[4] |
Balikagala B, Fukuda N, Ikeda M, et al. Evidence of artemisinin-resistant malaria in Africa[J]. N Engl J Med, 2021, 385(13): 1163-1171.
doi: 10.1056/NEJMoa2101746 |
[5] |
Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease[J]. Cell, 2016, 167(3): 610-624.
doi: S0092-8674(16)31008-X pmid: 27768886 |
[6] |
ArjenM, Dondorp, MD, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial[J]. Lancet, 2010, 376(9753): 1647-1657.
doi: 10.1016/S0140-6736(10)61924-1 pmid: 21062666 |
[7] |
Dondorp A, Nosten F, Stepniewska K, et al. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial[J]. Lancet, 2005, 366(9487): 717-725.
doi: 10.1016/S0140-6736(05)67176-0 pmid: 16125588 |
[8] |
Song XN, Wei W, Cheng WJ, et al. Cerebral malaria induced by Plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment[J]. Front Cell Infect Microbiol, 2022, 12: 939532.
doi: 10.3389/fcimb.2022.939532 |
[9] |
Riggle BA, Miller LH, Pierce SK. Desperately seeking therapies for cerebral malaria[J]. J Immunol, 2020, 204(2): 327-334.
doi: 10.4049/jimmunol.1900829 pmid: 31907275 |
[10] |
Dorovini-Zis K, Schmidt K, Huynh H, et al. The neuropathology of fatal cerebral malaria in Malawian children[J]. Am J Pathol, 2011, 178(5): 2146-2158.
doi: 10.1016/j.ajpath.2011.01.016 pmid: 21514429 |
[11] | Ju G, Wu SX. Neurobiology[M]. Xi’an: Fourth Military Medical University Publish House, 2015: 268-279. (in Chinese) |
(鞠躬, 武胜昔. 神经生物学[M]. 西安: 第四军医大学出版社, 2015: 268-279.) | |
[12] |
Pongponratn E, Aikawa M, Punpoowong B, et al. Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study[J]. Am J Trop Med Hyg, 1991, 44(2): 168-175.
pmid: 2012260 |
[13] |
Looker O, Blanch AJ, Liu BY, et al. The knob protein KAHRP assembles into a ring-shaped structure that underpins virulence complex assembly[J]. PLoS Pathog, 2019, 15(5): e1007761.
doi: 10.1371/journal.ppat.1007761 |
[14] |
Smith JD, Rowe JA, Higgins MK, et al. Malaria’s deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes[J]. Cell Microbiol, 2013, 15(12): 1976-1983.
doi: 10.1111/cmi.12183 |
[15] |
Gazzinelli RT, Kalantari P, Fitzgerald KA, et al. Innate sensing of malaria parasites[J]. Nat Rev Immunol, 2014, 14(11): 744-757.
doi: 10.1038/nri3742 pmid: 25324127 |
[16] |
Swanson PA, Hart GT, Russo MV, et al. CD8+T cells induce fatal brainstem pathology during cerebral malaria via luminal antigen-specific engagement of brain vasculature[J]. PLoS Pathog, 2016, 12(12): e1006022.
doi: 10.1371/journal.ppat.1006022 |
[17] |
Howland SW, Poh CM, Gun SY, et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria[J]. EMBO Mol Med, 2013, 5(7): 984-999.
doi: 10.1002/emmm.201202273 pmid: 23681698 |
[18] |
Sahu PK, Duffy FJ, Dankwa S, et al. Determinants of brain swelling in pediatric and adult cerebral malaria[J]. JCI Insight, 2021, 6(18). DOI: e145823.
doi: e145823 |
[19] |
Moxon CA, Chisala NV, Mzikamanda R, et al. Laboratory evidence of disseminated intravascular coagulation is associated with a fatal outcome in children with cerebral malaria despite an absence of clinically evident thrombosis or bleeding[J]. J Thromb Haemost, 2015, 13(9): 1653-1664.
doi: 10.1111/jth.13060 pmid: 26186686 |
[20] |
Francischetti IMB. Does activation of the blood coagulation cascade have a role in malaria pathogenesis?[J]. Trends Parasitol, 2008, 24(6): 258-263.
doi: 10.1016/j.pt.2008.03.009 pmid: 18467176 |
[21] |
Pain A, Ferguson DJ, Kai O, et al. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria[J]. Proc Natl Acad Sci USA, 2001, 98(4): 1805-1810.
pmid: 11172032 |
[22] | Higgins SJ, Purcell LA, Silver KL, et al. Dysregulation of angiopoietin-1 plays a mechanistic role in the pathogenesis of cerebral malaria[J]. Sci Transl Med, 2016, 8(358): 358ra128. |
[23] |
Gramaglia I, Sobolewski P, Meays D, et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria[J]. Nat Med, 2006, 12(12): 1417-1422.
pmid: 17099710 |
[24] |
Bridges DJ, Bunn J, van Mourik JA, et al. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings[J]. Blood, 2010, 115(7): 1472-1474.
doi: 10.1182/blood-2009-07-235150 pmid: 19897581 |
[25] |
Potchen MJ, Kampondeni SD, Seydel KB, et al. 1.5 tesla magnetic resonance imaging to investigate potential etiologies of brain swelling in pediatric cerebral malaria[J]. Am J Trop Med Hyg, 2018, 98(2): 497-504.
doi: 10.4269/ajtmh.17-0309 |
[26] |
Andoh NE, Gyan BA. The potential roles of glial cells in the neuropathogenesis of cerebral malaria[J]. Front Cell Infect Microbiol, 2021, 11: 741370.
doi: 10.3389/fcimb.2021.741370 |
[27] | WHO. WHO Guidelines for malaria[R]. Geneva: World Health Organization, 2023: 188-189. |
[28] | Expert Group of National Center for Infectious Diseases. Guidelines for malaria diagnosis and treatment[J]. Chin J ParasitolParasit Dis, 2022, 40(4): 419-427. (in Chinese) |
(国家传染病医学中心撰写组. 疟疾诊疗指南[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 419-427.) | |
[29] |
Langfitt JT, McDermott MP, Brim R, et al. Neurodevelopmental impairments 1 year after cerebral malaria[J]. Pediatrics, 2019, 143(2): e20181026.
doi: 10.1542/peds.2018-1026 |
[30] | Huang YY, Yao SJ, Bian ZF, et al. Immunoprotective effect of dexamethasone on experimental cerebral malaria in mice[J]. Chin J Parasitol Parasit Dis, 2022, 40(4): 446-453. (in Chinese) |
(黄媛媛, 姚世杰, 卞致芳, 等. 地塞米松对实验性脑型疟小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 446-453.) | |
[31] |
Warrell DA, Looareesuwan S, Warrell MJ, et al. Dexamethasone proves deleterious in cerebral malaria: a double-blind trial in 100 comatose patients[J]. N Engl J Med, 1982, 306(6): 313-319.
doi: 10.1056/NEJM198202113060601 |
[32] | Stuehr DJ. Mammalian nitric oxide synthases[J]. Biochim Biophys Acta BBA Bioenerg, 1999, 1411(2/3): 217-230. |
[33] |
Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide[J]. Proc Natl Acad Sci USA, 1987, 84(24): 9265-9269.
doi: 10.1073/pnas.84.24.9265 pmid: 2827174 |
[34] |
Freedman JE, Loscalzo J. Nitric oxide and its relationship to thrombotic disorders[J]. J Thromb Haemost, 2003, 1(6): 1183-1188.
pmid: 12871317 |
[35] | Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion[J]. PLoS One, 1991, 88(11): 4651-4655. |
[36] |
Matsushita K, Morrell CN, Cambien B, et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor[J]. Cell, 2003, 115(2): 139-150.
doi: 10.1016/s0092-8674(03)00803-1 pmid: 14567912 |
[37] |
Crawford JH, Isbell TS, Huang Z, et al. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation[J]. Blood, 2006, 107(2): 566-574.
doi: 10.1182/blood-2005-07-2668 pmid: 16195332 |
[38] |
Modin A, Björne H, Herulf M, et al. Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation[J]. Acta Physiol Scand, 2001, 171(1): 9-16.
doi: 10.1046/j.1365-201X.2001.00771.x pmid: 11350258 |
[39] |
Weinberg JB, Yeo TW, Mukemba JP, et al. Dimethylarginines: Endogenous inhibitors of nitric oxide synthesis in children with falciparum malaria[J]. J Infect Dis, 2014, 210(6): 913-922.
doi: 10.1093/infdis/jiu156 pmid: 24620026 |
[40] |
Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension[J]. J Clin Invest, 2003, 111(8): 1201-1209.
doi: 10.1172/JCI14172 pmid: 12697739 |
[41] |
Ayajiki K, Kindermann M, Hecker M, et al. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells[J]. Circ Res, 1996, 78(5): 750-758.
pmid: 8620594 |
[42] |
Yeo TW, Weinberg JB, Lampah DA, et al. Glycocalyx breakdown is associated with severe disease and fatal outcome in Plasmodium falciparum malaria[J]. Clin Infect Dis, 2019, 69(10): 1712-1720.
doi: 10.1093/cid/ciz038 |
[43] |
Hawkes MT, Conroy AL, Opoka RO, et al. Inhaled nitric oxide as adjunctive therapy for severe malaria: a randomized controlled trial[J]. Malar J, 2015, 14: 421.
doi: 10.1186/s12936-015-0946-2 |
[44] |
Mwanga-Amumpaire J, Carroll RW, Baudin E, et al. Inhaled nitric oxide as an adjunctive treatment for cerebral malaria in children: aphase II randomized open-label clinical trial[J]. Open Forum Infect Dis, 2015, 2(3): ofv111.
doi: 10.1093/ofid/ofv111 |
[45] |
Zanini GM, Martins YC, Cabrales P, et al. S-nitrosoglutathione prevents experimental cerebral malaria[J]. J Neuroimmune Pharmacol, 2012, 7(2): 477-487.
doi: 10.1007/s11481-012-9343-6 |
[46] |
Orjuela-Sánchez P, Ong PK, Zanini GM, et al. Transdermal glyceryl trinitrate as an effective adjunctive treatment with artemether for late-stage experimental cerebral malaria[J]. Antimicrob Agents Chemother, 2013, 57(11): 5462-5471.
doi: 10.1128/AAC.00488-13 pmid: 23979751 |
[47] |
Martins YC, Zanini GM, Frangos JA, et al. Efficacy of different nitric oxide-based strategies in preventing experimental cerebral malaria by Plasmodium berghei ANKA[J]. PLoS One, 2012, 7(2): e32048.
doi: 10.1371/journal.pone.0032048 |
[48] |
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease[J]. Physiol Rev, 2007, 87(1): 315-424.
doi: 10.1152/physrev.00029.2006 pmid: 17237348 |
[49] |
Yeo TW, Lampah DA, Rooslamiati I, et al. A randomized pilot study of L-arginine infusion in severe falciparum malaria: preliminary safety, efficacy and pharmacokinetics[J]. PLoS One, 2013, 8(7): e69587.
doi: 10.1371/journal.pone.0069587 |
[50] |
Gramaglia I, Velez J, Chang YS, et al. Citrulline protects mice from experimental cerebral malaria by ameliorating hypoargininemia, urea cycle changes and vascular leak[J]. PLoS One, 2019, 14(3): e0213428.
doi: 10.1371/journal.pone.0213428 |
[51] |
Ong PK, Melchior B, Martins YC, et al. Nitric oxide synthase dysfunction contributes to impaired cerebroarteriolar reactivity in experimental cerebral malaria[J]. PLoS Pathog, 2013, 9(6): e1003444.
doi: 10.1371/journal.ppat.1003444 |
[52] |
Yen W, Cai B, Yang JL, et al. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo[J]. PLoS One, 2015, 10(1): e0117133.
doi: 10.1371/journal.pone.0117133 |
[53] |
Hempel C, Sporring J, Kurtzhals JAL. Experimental cerebral malaria is associated with profound loss of both glycan and protein components of the endothelial glycocalyx[J]. FASEB J, 2019, 33(2): 2058-2071.
doi: 10.1096/fj.201800657R pmid: 30226810 |
[54] |
Jeansson M, Gawlik A, Anderson G, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury[J]. J Clin Invest, 2011, 121(6): 2278-2289.
doi: 10.1172/JCI46322 pmid: 21606590 |
[55] |
Kim M, Allen B, Korhonen EA, et al. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation[J]. J Clin Invest, 2016, 126(9): 3511-3525.
doi: 10.1172/JCI84871 pmid: 27548529 |
[56] |
Lovegrove FE, Tangpukdee N, Opoka RO, et al. Serum angiopoietin-1 and-2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children[J]. PLoS One, 2009, 4(3): e4912.
doi: 10.1371/journal.pone.0004912 |
[57] |
Conroy AL, Lafferty EI, Lovegrove FE, et al. Whole blood angiopoietin-1 and-2 levels discriminate cerebral and severe (non-cerebral) malaria from uncomplicated malaria[J]. Malar J, 2009, 8(1): 1-7.
doi: 10.1186/1475-2875-8-1 |
[58] |
Conroy AL, Hawkes M, McDonald CR, et al. Host biomarkers are associated with response to therapy and long-term mortality in pediatric severe malaria[J]. Open Forum Infect Dis, 2016, 3(3): ofw134.
doi: 10.1093/ofid/ofw134 |
[59] |
Jain V, Lucchi NW, Wilson NO, et al. Plasma levels of angiopoietin-1 and-2 predict cerebral malaria outcome in Central India[J]. Malar J, 2011, 10(1): 1-7.
doi: 10.1186/1475-2875-10-1 |
[60] | Han S, Lee SJ, Kim KE, et al. Amelioration of sepsis by TIE2 activation-induced vascular protection[J]. Sci Transl Med, 2016, 8(335): eaad9260. |
[61] |
Silver KL, Kain KC, Liles WC. Endothelial activation and dysregulation: a common pathway to organ injury in infectious diseases associated with systemic inflammation[J]. Drug Discov Today Dis Mech, 2007, 4(4): 215-222.
doi: 10.1016/j.ddmec.2008.01.002 |
[62] |
Sadler JE. Biochemistry and genetics of von Willebrand factor[J]. Annu Rev Biochem, 1998, 67: 395-424.
pmid: 9759493 |
[63] |
Dong JF, Moake JL, Nolasco L, et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions[J]. Blood, 2002, 100(12): 4033-4039.
doi: 10.1182/blood-2002-05-1401 |
[64] | Pendu R, Terraube V, Christophe OD, et al. P-selectin glycoprotein ligand 1 and β2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor[J]. Blood, 2006, 108(12): 3746-3752. |
[65] |
Larkin D, de Laat B, Jenkins PV, et al. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition[J]. PLoS Pathog, 2009, 5(3): e1000349.
doi: 10.1371/journal.ppat.1000349 |
[66] |
Löwenberg EC, Charunwatthana P, Cohen S, et al. Severe malaria is associated with a deficiency of von Willebrand factor cleaving protease, ADAMTS13[J]. Thromb Haemost, 2010, 103(1): 181-187.
doi: 10.1160/TH09-04-0223 |
[67] |
Graham SM, Chen JM, Chung DW, et al. Endothelial activation, haemostasis and thrombosis biomarkers in Ugandan children with severe malaria participating in a clinical trial[J]. Malar J, 2016, 15: 56.
doi: 10.1186/s12936-016-1106-z |
[68] |
de Mast Q, Groot E, Lenting PJ, et al. Thrombocytopenia and release of activated von Willebrand Factor during early Plasmodium falciparum malaria[J]. J Infect Dis, 2007, 196(4): 622-628.
doi: 10.1086/522499 |
[69] |
O’Regan N, Gegenbauer K, O'Sullivan JM, et al. A novel role for von Willebrand factor in the pathogenesis of experimental cerebral malaria[J]. Blood, 2016, 127(9): 1192-1201.
doi: 10.1182/blood-2015-07-654921 pmid: 26511133 |
[70] |
Kraisin S, Martinod K, Desender L, et al. Von Willebrand factor increases in experimental cerebral malaria but is not essential for late-stage pathogenesis in mice[J]. J Thromb Haemost, 2020, 18(9): 2377-2390.
doi: 10.1111/jth.14932 |
[71] |
Gul S, Ribeiro-Gomes FL, Moreira AS, et al. Whole blood transfusion improves vascular integrity and increases survival in artemether-treated experimental cerebral malaria[J]. Sci Rep, 2021, 11(1): 12077.
doi: 10.1038/s41598-021-91499-3 pmid: 34103601 |
[72] | Zodda D, Procopio G, Hewitt K, et al. Severe malaria presenting to the ED: a collaborative approach utilizing exchange transfusion and artesunate[J]. Am J Emerg Med, 2018, 36(6): 1126. e1-1126.e4. |
[73] |
Schiviz A, Wuersch K, Piskernik C, et al. A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13[J]. Blood, 2012, 119(25): 6128-6135.
doi: 10.1182/blood-2011-09-380535 pmid: 22529289 |
[74] |
Luo JC, Xiong Y, Han XF, et al. VEGF non-angiogenic functions in adult organ homeostasis: therapeutic implications[J]. J Mol Med (Berl), 2011, 89(7): 635-645.
doi: 10.1007/s00109-011-0739-1 pmid: 21365187 |
[75] |
Jain V, Armah HB, Tongren JE, et al. Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India[J]. Malar J, 2008, 7: 83.
doi: 10.1186/1475-2875-7-83 |
[76] |
Conroy AL, Phiri H, Hawkes M, et al. Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case-control study[J]. PLoS One, 2010, 5(12): e15291.
doi: 10.1371/journal.pone.0015291 |
[77] |
Yeo TW, Lampah DA, Gitawati R, et al. Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria[J]. Proc Natl Acad Sci USA, 2008, 105(44): 17097-17102.
doi: 10.1073/pnas.0805782105 pmid: 18957536 |
[78] |
Raacke M, Kerr A, Dörpinghaus M, et al. Altered cytokine response of human brain endothelial cells after stimulation with malaria patient plasma[J]. Cells, 2021, 10(7): 1656.
doi: 10.3390/cells10071656 |
[79] |
Furuta T, Kimura M, Watanabe N. Elevated levels of vascular endothelial growth factor (VEGF) and soluble vascular endothelial growth factor receptor (VEGFR)-2 in human malaria[J]. Am J Trop Med Hyg, 2010, 82(1): 136-139.
doi: 10.4269/ajtmh.2010.09-0203 |
[80] |
Kim YW, Byzova TV. Oxidative stress in angiogenesis and vascular disease[J]. Blood, 2014, 123(5): 625-631.
doi: 10.1182/blood-2013-09-512749 |
[81] |
Greenberg DA, Jin KL. From angiogenesis to neuropathology[J]. Nature, 2005, 438(7070): 954-959.
doi: 10.1038/nature04481 |
[82] |
Canavese M, Crisanti A. Vascular endothelial growth factor (VEGF) and lovastatin suppress the inflammatory response to Plasmodium berghei infection and protect against experimental cerebral malaria[J]. Pathog Glob Health, 2015, 109(6): 266-274.
doi: 10.1179/2047773215Y.0000000021 pmid: 26392164 |
[83] |
Hempel C, Hoyer N, Kildemoes A, et al. Systemic and cerebral vascular endothelial growth factor levels increase in murine cerebral malaria along with increased calpain and caspase activity and can be reduced by erythropoietin treatment[J]. Front Immunol, 2014, 5: 291.
doi: 10.3389/fimmu.2014.00291 pmid: 24995009 |
[84] |
Maines MD. The heme oxygenase system: a regulator of second messenger gases[J]. Annu Rev Pharmacol Toxicol, 1997, 37: 517-554.
pmid: 9131263 |
[85] |
Choi YK, Kim YM. Beneficial and detrimental roles of heme oxygenase-1 in the neurovascular system[J]. Int J Mol Sci, 2022, 23(13): 7041.
doi: 10.3390/ijms23137041 |
[86] |
Pamplona A, Ferreira A, Balla J, et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria[J]. Nat Med, 2007, 13(6): 703-710.
doi: 10.1038/nm1586 pmid: 17496899 |
[87] |
Craig AG, Grau GE, Janse C, et al. The role of animal models for research on severe malaria[J]. PLoS Pathog, 2012, 8(2): e1002401.
doi: 10.1371/journal.ppat.1002401 |
[88] |
Smith JD, Subramanian G, Gamain B, et al. Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family[J]. Mol Biochem Parasitol, 2000, 110(2): 293-310.
doi: 10.1016/S0166-6851(00)00279-6 |
[89] |
Ochola LB, Siddondo BR, Ocholla H, et al. Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome[J]. PLoS One, 2011, 6(3): e14741.
doi: 10.1371/journal.pone.0014741 |
[90] |
Tuikue Ndam N, Moussiliou A, Lavstsen T, et al. Parasites causing cerebral falciparum malaria bind multiple endothelial receptors and express EPCR and ICAM-1-binding PfEMP1[J]. J Infect Dis, 2017, 215(12): 1918-1925.
doi: 10.1093/infdis/jix230 pmid: 28863469 |
[91] |
Turner L, Lavstsen T, Berger SS, et al. Severe malaria is associated with parasite binding to endothelial protein C receptor[J]. Nature, 2013, 498(7455): 502-505.
doi: 10.1038/nature12216 |
[92] |
Petersen JEV, Bouwens EAM, Tamayo I, et al. Protein C system defects inflicted by the malaria parasite protein PfEMP1 can be overcome by a soluble EPCR variant[J]. Thromb Haemost, 2015, 114(5): 1038-1048.
doi: 10.1160/TH15-01-0018 |
[93] |
Frank, Lennartz. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria[J]. Cell Host Microbe, 2017, 21(3): 403-414.
doi: S1931-3128(17)30071-9 pmid: 28279348 |
[94] |
Mustaffa KMF, Storm J, Whittaker M, et al. In vitro inhibition and reversal of Plasmodium falciparum cytoadherence to endothelium by monoclonal antibodies to ICAM-1 and CD36[J]. Malar J, 2017, 16(1): 279.
doi: 10.1186/s12936-017-1930-9 |
[95] |
Messina V, Loizzo S, Travaglione S, et al. The bacterial protein CNF1 as a new strategy against Plasmodium falciparum cytoadherence[J]. PLoS One, 2019, 14(3): e0213529.
doi: 10.1371/journal.pone.0213529 |
[96] |
Bull PC, Lowe BS, Kortok M, et al. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria[J]. Nat Med, 1998, 4(3): 358-360.
doi: 10.1038/nm0398-358 pmid: 9500614 |
[97] |
Lennartz F, Bengtsson A, Olsen RW, et al. Mapping the binding site of a cross-reactive Plasmodium falciparum PfEMP1 monoclonal antibody inhibitory of ICAM-1 binding[J]. J Immunol, 2015, 195(7): 3273-3283.
doi: 10.4049/jimmunol.1501404 pmid: 26320251 |
[98] |
Lau CK, Turner L, Jespersen JS, et al. Structural conservation despite huge sequence diversity allows EPCR binding by the PfEMP1 family implicated in severe childhood malaria[J]. Cell Host Microbe, 2015, 17(1): 118-129.
doi: 10.1016/j.chom.2014.11.007 pmid: 25482433 |
[99] | Gillrie MR, Renaux B, Russell-Goldman E, et al. Thrombin cleavage of Plasmodium falciparum erythrocyte membrane protein 1 inhibits cytoadherence[J]. mBio, 2016, 7(5): e01120-16. |
[100] |
Vogt AM, Barragan A, Chen QJ, et al. Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1α domain of PfEMP1[J]. Blood, 2003, 101(6): 2405-2411.
doi: 10.1182/blood-2002-07-2016 |
[101] |
Lantero E, Aláez-Versón CR, Romero P, et al. Repurposing heparin as antimalarial: evaluation of multiple modifications toward in vivo application[J]. Pharmaceutics, 2020, 12(9): 825.
doi: 10.3390/pharmaceutics12090825 |
[102] |
Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis[J]. Front Cell Infect Microbiol, 2017, 7: 324.
doi: 10.3389/fcimb.2017.00324 |
[103] |
Riggle BA, Manglani M, Maric D, et al. CD8+ T cells target cerebrovasculature in children with cerebral malaria[J]. J Clin Investig, 2020, 130(3): 1128-1138.
doi: 10.1172/JCI133474 |
[104] |
van Hensbroek MB, Palmer A, Onyiorah E, et al. The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria[J]. J Infect Dis, 1996, 174(5): 1091-1097.
pmid: 8896514 |
[105] |
Looareesuwan S, Sjostrom L, Krudsood S, et al. Polyclonal anti-tumor necrosis factor-alpha Fab used as an ancillary treatment for severe malaria[J]. Am J Trop Med Hyg, 1999, 61(1): 26-33.
pmid: 10432050 |
[106] |
Jin JW, Fan XL, del Cid-Pellitero E, et al. Development of an α-synuclein knockdown peptide and evaluation of its efficacy in Parkinson’s disease models[J]. Commun Biol, 2021, 4: 232.
doi: 10.1038/s42003-021-01746-6 |
[107] |
Niewold P, Cohen A, van Vreden C, et al. Experimental severe malaria is resolved by targeting newly-identified monocyte subsets using immune-modifying particles combined with artesunate[J]. Commun Biol, 2018, 1: 227.
doi: 10.1038/s42003-018-0216-2 pmid: 31924860 |
[108] |
Van Den Ham KM, Smith LK, Richer MJ, et al. Protein tyrosine phosphatase inhibition prevents experimental cerebral malaria by precluding CXCR3 expression on T cells[J]. Sci Rep, 2017, 7(1): 5478.
doi: 10.1038/s41598-017-05609-1 pmid: 28710387 |
[109] |
Gordon EB, Hart GT, Tran TM, et al. Targeting glutamine metabolism rescues mice from late-stage cerebral malaria[J]. Proc Natl Acad Sci USA, 2015, 112(42): 13075-13080.
doi: 10.1073/pnas.1516544112 pmid: 26438846 |
[110] |
Wang J, Li Y, Shen Y, et al. PDL1 fusion protein protects against experimental cerebral malaria via repressing over-reactive CD8+ T cell responses[J]. Front Immunol, 2018, 9: 3157.
doi: 10.3389/fimmu.2018.03157 pmid: 30693001 |
[111] |
Jiang XH, Chen LN, Zheng ZY, et al. Synergistic effect of combined artesunate and tetramethylpyrazine in experimental cerebral malaria[J]. ACS Infect Dis, 2020, 6(9): 2400-2409.
doi: 10.1021/acsinfecdis.0c00124 pmid: 32786270 |
[112] |
Zheng ZY, Liu H, Wang X, et al. Artesunate and tetramethylpyrazine exert effects on experimental cerebral malaria in a mechanism of protein S-nitrosylation[J]. ACS Infect Dis, 2021, 7(10): 2836-2849.
doi: 10.1021/acsinfecdis.1c00085 |
[113] |
Mukherjee S, Ray G, Saha B, et al. Oral therapy using a combination of nanotized antimalarials and immunomodulatory molecules reduces inflammation and prevents parasite induced pathology in the brain and spleen of P. berghei ANKA infected C57BL/6 mice[J]. Front Immunol, 2022, 12: 819469.
doi: 10.3389/fimmu.2021.819469 |
[114] |
Bernabeu M, Howard C, Zheng Y, et al. Bioengineered 3D microvessels for investigating Plasmodium falciparum pathogenesis[J]. Trends Parasitol, 2021, 37(5): 401-413.
doi: 10.1016/j.pt.2020.12.008 pmid: 33485788 |
[115] |
Harbuzariu A, Pitts S, Cespedes JC, et al. Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids[J]. Sci Rep, 2019, 9(1): 19162.
doi: 10.1038/s41598-019-55631-8 pmid: 31844087 |
[116] |
Beare NAV, Taylor TE, Harding SP, et al. Malarial retinopathy: a newly established diagnostic sign in severe malaria[J]. Am J Trop Med Hyg, 2006, 75(5): 790-797.
pmid: 17123967 |
[117] |
Wilson NO, Jain V, Roberts CE, et al. CXCL4 and CXCL10 predict risk of fatal cerebral malaria[J]. Dis Markers, 2011, 30(1): 39-49.
doi: 10.3233/DMA-2011-0763 pmid: 21508508 |
[1] | 姜慧娇, 桂显伟, 郭黎姣, 杨雄峰, 王小义, 陈雪玲, 吴向未. VEGFA/VEGFR2在小鼠肝多房棘球蚴组织血管生成中的表达及作用[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 673-681. |
[2] | 闫谨, 李丹妮, 傅炜昕. 自然杀伤细胞在小鼠脑型疟中对CD4+ T细胞亚群的免疫调节作用[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(3): 332-338. |
[3] | 杜云婷, 赵薇, 曹雅明, 徐兰. 青蒿琥酯与重组蛋白IL-33联合调控小鼠脑型疟免疫相关指标研究[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(2): 139-145. |
[4] | 杜云婷, 赵薇, 徐兰, 张学星. 青蒿琥酯与促红细胞生成素联合使用对小鼠脑型疟相关因子表达的影响[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(5): 525-531. |
[5] | 王军, 沈燕, 李悦, 赵亚. 免疫检查点分子调控在疟原虫感染与免疫中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(4): 472-480. |
[6] | 刘太平, 付雍, 徐文岳*. 脑型疟发生的免疫病理机制[J]. 中国寄生虫学与寄生虫病杂志, 2011, 29(1): 14-64-67. |
[7] | 沈娟;田野苹;宋关鸿. 重症恶性脑型疟疾的细胞粘附机制[J]. 中国寄生虫学与寄生虫病杂志, 2003, 21(1): 14-49. |
[8] | 李苏;杨俊芳;张芝晔. 21例脑型疟的临床表现及误诊分析[J]. 中国寄生虫学与寄生虫病杂志, 2002, 20(6): 30-350. |
[9] | 杨家明. 脑型疟死亡一例分析[J]. 中国寄生虫学与寄生虫病杂志, 2002, 20(4): 33-208. |
[10] | 车里穆;牛宇欣;李慧珠;陈小宁. TNF-α和ICAM-1在脑型疟发病中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2000, 18(3): 4-140. |
[11] | 边中启;王功焯;田学明;范江. 脑型疟患者红细胞膜蛋白分子的表达(英文)[J]. 中国寄生虫学与寄生虫病杂志, 1999, 17(6): 11-362. |
[12] | 边中启;管惟滨;宋关鸿;王功焯;李方银. 中国脑型疟患者恶性疟原虫分离株裂殖子表面蛋白MSP1第16—17区基因的分子克隆及序列分析[J]. 中国寄生虫学与寄生虫病杂志, 1997, 15(2): 2-75. |
[13] | 边中启;宋关鸿;管惟滨;严维耀;郑兆鑫. 中国脑型疟患者恶性疟原虫分离株裂殖子表面蛋白MSP1 第16- 17 区基因和MSP2 基因的分子克隆与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 1997, 15(1): 1-6. |
[14] | 张锦春. 脑型疟救治成功一例[J]. 中国寄生虫学与寄生虫病杂志, 1996, 14(3): 218-218. |
[15] | 高德常,于克秀,张正武,张祥. 云南勐腊地区恶性疟血象分析[J]. 中国寄生虫学与寄生虫病杂志, 1987, 5(4): 312-312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||