| [1] | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: Advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2): e00075-18. | | [2] | 王志鑫, 刘云飞, 王灏, 等. 肝泡型包虫病的诊治进展[J]. 器官移植, 2024, 15(2): 171-177. | | | Wang ZX, Liu YF, Wang H, et al. Progress in diagnosis and treatment of hepatic alveolar echinococcosis[J]. Organ Transplant, 2024, 15(2): 171-177. (in Chinese) | | [3] | Deplazes P, Rinaldi L, Alvarez Rojas CA, et al. Global distribution of alveolar and cystic echinococcosis[J]. Adv Parasitol, 2017, 95: 315-493. | | [4] | Vuitton DA. The ambiguous role of immunity in echinococcosis: Protection of the host or of the parasite?[J]. Acta Trop, 2003, 85(2): 119-132. | | [5] | 周琳, 周光炎, 路丽明. IL-10的双向免疫调节作用[J]. 细胞与分子免疫学杂志, 2012, 28 (10): 1100-1102, 1106. | | | Zhou L, Zhou GY, Lu LM. IL-10: A master regulator of immune homeostasis[J]. Chin J Cell Mol Immunol, 2012, 28(10): 1100-1102, 1106. (in Chinese) | | [6] | Godot V, Harraga S, Deschaseaux M, et al. Increased basal production of interleukin-10 by peripheral blood mononuclear cells in human alveolar echinococcosis[J]. Eur Cytokine Netw, 1997, 8(4): 401-408. | | [7] | Tian FM, Jiang T, Qi XW, et al. Role of cytokines on the progression of liver fibrosis in mice infected with Echinococcus multilocularis[J]. Infect Drug Resist, 2021, 14: 5651-5660. | | [8] | 张伶慧. 间充质干细胞对多房棘球蚴感染性肝纤维化的疗效及机制研究[D]. 桂林: 桂林医学院, 2022: 1-67. | | | Zhang LH. Efficacy and mechanism of mesenchymalstem cells in liver fibrosis caused by Echinococcus multilocularis infection[D]. Guilin: Guilin Medical College, 2022: 1-67. (in Chinese) | | [9] | 李建华, 张涛, 张耀刚, 等. IL-10CD5CD1d、IFN-γ Th1及M1型巨噬细胞在多房棘球蚴感染SD大鼠后的免疫调节初步分析[J]. 医学动物防制, 2022, 38(4): 307-310, 315, 409. | | | Li JH, Zhang T, Zhang YG, et al. Preliminary immunomodulatory analysis on IL-10CD5CD1d, IFN-γ Th1 and M1 macrophages after SD rat infected by the Echinococcus multilocularis[J]. Med Pest Control, 2022, 38(4): 307-310, 315, 409. (in Chinese) | | [10] | Zheng ZH, Huang G, Gao T, et al. Epigenetic changes associated with interleukin-10[J]. Front Immunol, 2020, 11: 1105. | | [11] | Boonpiyathad T, Satitsuksanoa P, Akdis M, et al. IL-10 producing T and B cells in allergy[J]. Semin Immunol, 2019, 44: 101326. | | [12] | Neumann C, Scheffold A, Rutz S. Functions and regulation of T cell-derived interleukin-10[J]. Semin Immunol, 2019, 44: 101344. | | [13] | Trifunović J, Miller L, Debeljak Ž, et al. Pathologic patterns of interleukin 10 expression: A review[J]. Biochem Med, 2015, 25(1): 36-48. | | [14] | 黄小会, 赵欣, 董晓惠, 等. IL-10参与调控巨噬细胞的极化[J]. 军事医学, 2018, 42(9): 673-677. | | | Huang XH, Zhao X, Dong XH, et al. IL-10 regulates macrophage polarization[J]. Mil Med Sci, 2018, 42(9): 673-677. (in Chinese) | | [15] | Wang N, Liang HW, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance[J]. Front Immunol, 2014, 5: 614. | | [16] | Walter MR. The molecular basis of IL-10 function: From receptor structure to the onset of signaling[J]. Curr Top Microbiol Immunol, 2014, 380: 191-212. | | [17] | Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism[J]. Front Immunol, 2014, 5: 603. | | [18] | Diefenhardt P, Nosko A, Kluger MA, et al. IL-10 receptor signaling empowers regulatory T cells to control Th17 responses and protect from GN[J]. J Am Soc Nephrol, 2018, 29(7): 1825-1837. | | [19] | Kawamura N, Kamiyama T, Sato N, et al. Long-term results of hepatectomy for patients with alveolar echinococcosis: A single-center experience[J]. J Am Coll Surg, 2011, 212(5): 804-812. | | [20] | 蔺珂, 孟瑾, 贺飞明, 等. 细粒棘球蚴囊液抑制脂多糖诱导的巨噬细胞炎症反应[J]. 石河子大学学报(自然科学版), 2022, 40(4): 438-444. | | | Lin K, Meng J, He FM, et al. Echinococcus granulosus cyst fluid inhibits the lipopolysaccharide-induced inflammatory response in macrophages through the IL-10/STAT3 signaling[J]. J Shihezi Univ (Nat Sci Ed), 2022, 40(4): 438-444. (in Chinese) | | [21] | Dai WJ, Hemphill A, Waldvogel A, et al. Major carbohydrate antigen of Echinococcus multilocularis induces an immunoglobulin G response independent of alphabeta+ CD4+ T cells[J]. Infect Immun, 2001, 69(10): 6074-6083. | | [22] | Harraga S, Godot V, Bresson-Hadni S, et al. Profile of cytokine production within the periparasitic granuloma in human alveolar echinococcosis[J]. Acta Trop, 2003, 85(2): 231-236. | | [23] | 刘寒冬, 王宏宾, 樊海宁, 等. 多房棘球蚴病的免疫逃避机制[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36 (6): 655-660. | | | Liu HG, Wang HB, Fan HN, et al. Alveolar echinococcosis and immune evasion[J]. Chin J Parasitol Parasit Dis, 2018, 36(6): 655-660. (in Chinese) | | [24] | Movahedi K, Laoui D, Gysemans C, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes[J]. Cancer Res, 2010, 70(14): 5728-5739. | | [25] | 田媛, 刘起会, 朱迅, 等. 巨噬细胞极化信号通路及其调控机制研究进展[J]. 现代免疫学, 2015, 35(5): 425-428. | | | Tian Y, Liu QH, Zhu X, et al. Research advances in signaling pathways and regulatory mechanisms of macrophage polarization[J]. Curr Immunol, 2015, 35(5): 425-428. (in Chinese) | | [26] | 尹先敏, 种世桂, 陈根, 等. 巨噬细胞调控多房棘球蚴病所致肝纤维化研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42 (6): 790-795, 801. | | | Yin XM, Zhong SG, Chen G, et al. Research progress of macrophage regulation of liver fibrosis induced by alveolar echinococcosis[J]. Chin J Parasitol Parasit Dis, 2024, 42 (6): 790-795, 801. (in Chinese) | | [27] | 王东旭. 巨噬细胞极化在肝泡型包虫病中的作用及机制研究[D]. 青海: 青海大学, 2018: 1-41. | | | Wang DX. Effects and mechanisms of macrophage polarization on hepatic alveolar echinococcosis[D]. Qinghai: Qinghai University, 2018: 1-41. (in Chinese) | | [28] | 彭珊珊. 巨噬细胞极化在细粒棘球蚴感染小鼠中的免疫作用[D]. 新疆: 新疆医科大学, 2016: 1-59. | | | Peng SS. The study on macrophages polarization in mice infected with Echinoccus granulosus[D]. Xinjiang: Xinjiang Medical University, 2016: 1-59. (in Chinese) | | [29] | Liu YM, Tian FM, Shan JY, et al. Kupffer cells: Important participant of hepatic alveolar echinococcosis[J]. Front Cell Infect Microbiol, 2020, 10: 8. | | [30] | El Kasmi KC, Stenmark KR. Contribution of metabolic reprogramming to macrophage plasticity and function[J]. Semin Immunol, 2015, 27(4): 267-275. | | [31] | Eddie Ip WK, Hoshi N, Shouval DS, et al. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356(6337): 513-519. | | [32] | Banchereau J, Steinman RM. Dendritic cells and the control of immunity[J]. Nature, 1998, 392(6673): 245-252. | | [33] | 马晓静, 尚梅, 尹启超, 等. 泡型肝包虫患者外周血树突状细胞成熟度[J]. 中国热带医学, 2019, 19(2): 111-115. | | | Ma XJ, Shang M, Yin QC, et al. Maturation of dendritic cells in peripheral blood of patients with alveolar echinococcosis[J]. China Trop Med, 2019, 19(2): 111-115. (in Chinese) | | [34] | 尚梅. 外周血树突状细胞成熟度在泡型肝包虫患者中的研究[D]. 青海: 青海大学, 2017: 1-26. | | | Shang M. Study on maturation of dendritic cells in peripheralblood of patients with alveolar echinococcosis[D]. Qinhai: Qinhai University, 2017: 1-26. (in Chinese) | | [35] | Meng R, Fu Y, Zhang YG, et al. Indoleamine 2,3-dioxygenase 1 signaling orchestrates immune tolerance in Echinococcus multilocularis-infected mice[J]. Front Immunol, 2022, 13: 1032280. | | [36] | 单骄宇. 细粒棘球蚴致树突状细胞免疫耐受的机制研究[D]. 乌鲁木齐: 新疆医科大学, 2011: 1-118. | | | Shan JY. The mechanism of dendritic cell Immune tolerance caused by cystic echinococcosis[D]. Urumqi: Xinjiang Medical University, 2011: 1-118. (in Chinese) | | [37] | Hackstein H, Thomson AW. Dendritic cells: Emerging pharmacological targets of immunosuppressive drugs[J]. Nat Rev Immunol, 2004, 4(1): 24-35. | | [38] | Munn DH, Sharma MD, Lee JR, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase[J]. Science, 2002, 297(5588): 1867-1870. | | [39] | Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation[J]. Blood, 2010, 115(23): 4742-4749. | | [40] | Belkaid Y, Sun CM, Bouladoux N. Parasites and immunoregulatory T cells[J]. Curr Opin Immunol, 2006, 18(4): 406-412. | | [41] | Gottstein B, Wang JH, Boubaker G, et al. Susceptibility versus resistance in alveolar echinococcosis (larval infection with Echinococcus multilocularis)[J]. Vet Parasitol, 2015, 213(3/4): 103-109. | | [42] | Haben I, Hartmann W, Specht S, et al. T-cell-derived, but not B-cell-derived, IL-10 suppresses antigen-specific T-cell responses in Litomosoides sigmodontis-infected mice[J]. Eur J Immunol, 2013, 43(7): 1799-1805. | | [43] | Pang NN, Zhang FB, Ma XM, et al. TGF-β/Smad signaling pathway regulates Th17/Treg balance during Echinococcus multilocularis infection[J]. Int Immunopharmacol, 2014, 20(1): 248-257. | | [44] | Zhang WB, Wen H, Li J, et al. Immunology and immunodiagnosis of cystic echinococcosis: An update[J]. Clin Dev Immunol, 2012, 2012: 101895. | | [45] | Pit DSS, Polderman AM, Schulz-key H, et al. Prenatal immune priming with helminth infections: Parasite-specific cellular reactivity and Th1 and Th2 cytokine responses in neonates[J]. Allergy, 2000, 55(8): 732-739. | | [46] | Liu Y, Cheng LS, Wu SD, et al. IL-10-producing regulatory B-cells suppressed effector T-cells but enhanced regulatory T-cells in chronic HBV infection[J]. Clin Sci, 2016, 130(11): 907-919. | | [47] | 彭珊珊, 王亮, 兰希, 等. IL-10在细粒棘球蚴感染小鼠的免疫调控作用研究[J]. 中国病原生物学杂志, 2016, 11 (1): 41-44, 49. | | | Peng SS, Wang L, Lan X, et al. The expression of IL-10 in mice infected with Echinococcus[J]. Chin J Pathog Biol, 2016, 11(1): 41-44, 49. (in Chinese) | | [48] | 魏晓丽, 丁剑冰, 许晏, 等. 小鼠感染泡球蚴后细胞因子水平的变化[J]. 中国寄生虫学与寄生虫病杂志, 2004, 31(6): 43-46. | | | Wei XL, Ding JB, Xu Y, et al. Change of cytokines in mice with Echinococcus multilocularis Infection[J]. Chin J Parasitol Parasit Dis, 2004, 31(6): 43-46. (in Chinese) | | [49] | 赵慧, 庞楠楠, 马海梅, 等. 泡球蚴感染小鼠Tregs与Th17细胞相关细胞因子的平衡变化[J]. 中国病原生物学杂志, 2012, 7(2): 129-131, 160. | | | Zhao H, Pang NN, Ma HM, et al. The levels of cytokines related to Tregs and Th17 cells in Echinococcus multilocularis infection[J]. J Pathog Biol, 2012, 7(2): 129-131, 160. (in Chinese) |
|