[1] | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2): e00075. | [2] | Peters L, Burkert S, Grüner B. Parasites of the liver: epidemiology, diagnosis and clinical management in the European context[J]. J Hepatol, 2021, 75(1): 202-218. | [3] | Gottstein B, Soboslay P, Ortona E, et al. Immunology of alveolar and cystic echinococcosis (AE and CE)[J]. Adv Parasitol, 2017, 96: 1-54. | [4] | Siracusano A, Teggi A, Ortona E. Human cystic echinococcosis: old problems and new perspectives[J]. Interdiscip Perspect Infect Dis, 2009, 2009: 474368. | [5] | Li LF, Wang LP, Li JY, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer[J]. Cancer Res, 2018, 78(7): 1779-1791. | [6] | Antonioli L, Pacher P, Vizi ES, et al. CD39 and CD73 in immunity and inflammation[J]. Trends Mol Med, 2013, 19(6): 355-367. | [7] | Sun CF, Wang BC, Hao SL. Adenosine-A2A receptor pathway in cancer immunotherapy[J]. Front Immunol, 2022, 13: 837230. | [8] | Kazemi MH, Raoofi Mohseni S, Hojjat-Farsangi M, et al. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer[J]. J Cell Physiol, 2018, 233(3): 2032-2057. | [9] | Antonioli L, Blandizzi C, Pacher P, et al. Immunity, inflammation and cancer: a leading role for adenosine[J]. Nat Rev Cancer, 2013, 13(12): 842-857. | [10] | Ghalamfarsa G, Kazemi MH, Raoofi Mohseni S, et al. CD73 as a potential opportunity for cancer immunotherapy[J]. Expert Opin Ther Targets, 2019, 23(2): 127-142. | [11] | Zeng JR, Ning ZC, Wang YZ, et al. Implications of CD39 in immune-related diseases[J]. Int Immunopharmacol, 2020, 89(Pt A): 107055. | [12] | Chen B, Yan MZ, Gao HJ, et al. In vitro and in vivo efficacies of novel harmine derivatives in the treatment of cystic echinococcosis[J]. Drug Des Devel Ther, 2023, 17: 2441-2454. | [13] | Wu JC, Zhu YQ, Zhou LM, et al. Parasite-derived excretory-secretory products alleviate gut microbiota dysbiosis and improve cognitive impairment induced by a high-fat diet[J]. Front Immunol, 2021, 12: 710513. | [14] | Xiao J, Zhu YZ, Wu JW, et al. Expression profiling of exosomal miRNAs derived from different stages of infection in mice infected with Echinococcus granulosus protoscoleces using high-throughput sequencing[J]. Parasitol Res, 2022, 121(7): 1993-2008. | [15] | Jayasingam SD, Citartan M, Thang TH, et al. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice[J]. Front Oncol, 2019, 9: 1512. | [16] | Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163+ macrophages in inflammatory and malignant diseases[J]. Int J Mol Sci, 2020, 21(15): 5497. | [17] | Ma SR, Deng WW, Liu JF, et al. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma[J]. Mol Cancer, 2017, 16(1): 99. | [18] | Vincenzi F, Pasquini S, Contri C, et al. Pharmacology of adenosine receptors: recent advancements[J]. Biomolecules, 2023, 13(9): 1387. | [19] | Csóka B, Selmeczy Z, Koscsó B, et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors[J]. FASEB J, 2012, 26(1): 376-386. | [20] | Bach N, Winzer R, Tolosa E, et al. The clinical significance of CD73 in cancer[J]. Int J Mol Sci, 2023, 24(14): 11759. | [21] | Cai JN, Wang YL, Sheng XD, et al. Shufeng Jiedu capsule inhibits inflammation and apoptosis by activating A2AAR and inhibiting NF-κB to alleviate LPS-induced ALI[J]. J Ethnopharmacol, 2022, 298: 115661. | [22] | Wang LQ, Zhang WT, Cen RY, et al. ALA-PDT regulates macrophage M1 polarization via ERK/MAPK-NLRP3 pathway to promote the early inflammatory response[J]. Lasers Surg Med, 2022, 54(10): 1309-1320. |
|