CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2022, Vol. 40 ›› Issue (4): 493-499.doi: 10.12140/j.issn.1000-7423.2022.04.012
• ORIGINAL ARTICLES • Previous Articles Next Articles
SONG Peng(), CAI Yu-chun, LU Yan, AI Lin, CHEN Mu-xin, CHEN Shao-hong, CHEN Jia-xu*(
)
Received:
2022-03-04
Revised:
2022-04-28
Online:
2022-08-30
Published:
2022-09-07
Contact:
CHEN Jia-xu
E-mail:songpeng@nipd.chinacdc.cn;chenjx@nipd.chinacdc.cn
Supported by:
CLC Number:
SONG Peng, CAI Yu-chun, LU Yan, AI Lin, CHEN Mu-xin, CHEN Shao-hong, CHEN Jia-xu. Establishment of mouse infection model of Babesia microti Lishui isolate and consequent pathological changes[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 493-499.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jsczz.cn/EN/10.12140/j.issn.1000-7423.2022.04.012
Fig. 1
Morphorogy of parasites in the blood smears of BALB/c mice infected with B. microti Lishui isolate (Giemsa staining, × 1 000) A: Pre-infection, no parasites detected in red blood cells; B: 5 days post infection,trophozoites appeared as ring forms; C: 10 days post infection, double pear-shaped or “Maltese cross” forms were found in B. microti-infected erythrocytes, and hemolysis occurred; D, E: 15, 20 days post infection, trophozoites mainly appeared as ring forms.
Fig. 4
Pathological changes of spleen from BALB/c mice infected with B. microti Lishui isolate(HE staining, × 100) A: Control group, the border region between the red and white pulp was clear; B: Infection group, 10 days post infection, splenic sinus congestion with the marginal zone blurred; C: Infection group, 20 days post infection, showing clear boundery of red and white pulp, and recovered marginal zone.
Table 1
Routine blood test results of BALB/c mice infected with B. microti Lishui isolate
指标 Indicator | 对照组 Control group | 感染组 Infection group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 d | 5 d | 10 d | 15 d | 20 d | 0 d | 5 d | 10 d | 15 d | 20 d | |
红细胞计数/1012·L-1 Red blood cell count/1012·L-1 | 10.26±0.65 | 10.04±0.66 | 9.55±0.16 | 10.73±0.50 | 10.31±0.36 | 10.31±0.27 | 9.72±0.38 | 4.45±0.32b | 4.56±1.33b | 6.57±0.28b |
血红蛋白浓度/g·L-1 Hemoglobin concentration/g·L-1 | 155.8±8.1 | 152.2±6.9 | 163.0±4.8 | 169.6±9.9 | 157.4±1.3 | 162.4±3.8 | 154.4±5.6 | 86.2±6.0b | 131.8±6.5b | 128.4±3.2b |
红细胞压积/% Hematocrit/% | 48.44±1.47 | 48.20±1.42 | 47.94±1.64 | 47.28±2.24 | 47.82±1.42 | 47.70±0.76 | 46.54±1.86 | 27.72±2.03b | 41.66±1.45b | 42.02±1.25b |
平均红细胞体积/fL Mean red blood cell volume/fL | 48.4±1.3 | 47.2±0.8 | 48.2±1.1 | 47.4±1.8 | 48.6±0.8 | 47.4±1.3 | 47.9±0.2 | 60.7±1.4b | 66.7±2.2b | 63.8±2.2b |
平均血红蛋白含量/pg Mean corpuscular hemoglobin/pg | 15.6±0.7 | 16.0±0.6 | 16.7±0.7 | 15.6±0.5 | 15.8±0.4 | 16.0±0.1 | 15.8±0.3 | 19.4±0.4b | 20.6±1.5b | 19.6±0.4b |
平均血红蛋白浓度/g·L-1 Mean corpuscular hemoglobin concentration/g·L-1 | 336.8±2.8 | 333.8±6.0 | 339.0±3.9 | 336.2±3.1 | 339.4±5.5 | 338.4±3.9 | 332.2±4.8 | 320.4±3.8b | 315.4±13.2a | 318.4±3.0b |
红细胞分布宽度-变异系数/% Erythrocyte distribution width- coefficient of variation/% | 13.1±0.6 | 12.7±0.3 | 13.5±0.5 | 13.1±0.5 | 13.0±0.3 | 13.1±0.4 | 13.3±0.2 | 31.9±1.3b | 19.3±2.2b | 18.6±2.2b |
红细胞分布宽度-标准差/fL Erythrocyte distribution width-standard deviation/fL | 28.0±0.7 | 26.4±1.3 | 27.7±1.3 | 26.5±0.5 | 26.1±1.5 | 26.5±1.1 | 27.5±0.6 | 84.1±4.0b | 52.8±7.7b | 48.9±5.4b |
白细胞计数/109·L-1 White blood cell count/109·L-1 | 4.10±0.34 | 3.96±0.34 | 3.85±0.26 | 4.05±0.42 | 4.11±0.56 | 3.65±0.49 | 3.87±0.55 | 6.76±0.87b | 5.65±1.02a | 5.89±0.89a |
淋巴细胞计数/109·L-1 Lymphocyte count/109·L-1 | 2.83±0.42 | 2.39±0.07 | 2.87±0.54 | 3.03±0.39 | 2.87±0.21 | 2.56±0.34 | 2.44±0.36 | 4.23±0.54a | 3.68±0.76 | 4.22±0.69a |
单核细胞计数/109·L-1 Monocyte count/109·L-1 | 0.12±0.03 | 0.12±0.04 | 0.17±0.05 | 0.07±0.04 | 0.16±0.05 | 0.15±0.05 | 0.23±0.03b | 0.78±0.20b | 0.40±0.13b | 0.25±0.03a |
单核细胞百分比/% Monocyte percent/% | 3.28±0.50 | 3.60±0.31 | 3.28±0.40 | 4.14±0.55 | 3.88±0.54 | 3.48±0.71 | 6.14±1.24b | 9.90±0.87b | 9.10±0.99b | 4.34±0.67 |
嗜酸粒细胞计数/109·L-1 Eosinophil count/109·L-1 | 0.15±0.05 | 0.13±0.02 | 0.16±0.02 | 0.15±0.02 | 0.14±0.02 | 0.18±0.06 | 0.09±0.03 | 0.19±0.03 | 0.18±0.06 | 0.20±0.04 |
嗜酸性粒细胞百分比/% Eosinophil percent/% | 2.14±0.57 | 2.06±0.22 | 2.96±0.40 | 2.94±0.60 | 2.46±0.35 | 2.54±0.44 | 2.66±0.71 | 2.92±0.36 | 4.60±1.13 | 3.52±1.07 |
中性粒细胞计数/109·L-1 Neutrophil count/109·L-1 | 0.73±0.24 | 0.76±0.16 | 0.78±0.15 | 1.12±0.20 | 1.03±0.11 | 0.92±0.18 | 1.09±0.26 | 1.92±0.42b | 1.06±0.42 | 1.19±0.26 |
中性粒细胞百分比/% Neutrophil percent/% | 22.66±1.85 | 22.22±2.20 | 21.20±1.18 | 23.24±2.20 | 23.02±1.42 | 22.7±1.76 | 28.00±4.33 | 27.74±2.67b | 22.86±0.79 | 20.62±2.00 |
[1] | Madison-Antenucci S, Kramer LD, Gebhardt LL, et al. Emerging tick-borne disease[J]. Clin Microbiol Rev, 2020, 33(2): e00083-18. |
[2] | Cai YC, Chen SH, Yan L, et al. Dynamic changes of density of Babesia microti in mice with latent infection after re-infection,immunosuppression, or random transmission to healthy mice[J]. Chin J Parasitol Parasit Dis, 2017, 35(4): 327-332. (in Chinese) |
( 蔡玉春, 陈韶红, 卢艳, 等. 田鼠巴贝虫隐性感染鼠再感染、免疫抑制或盲传后的虫密度消长规律研究[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(4): 327-332.) | |
[3] |
Schnittger L, Rodriguez AE, Florin-Christensen M, et al. Babesia: a world emerging[J]. Infect Genet Evol, 2012, 12(8): 1788-1809.
doi: 10.1016/j.meegid.2012.07.004 pmid: 22871652 |
[4] |
Jalovecka M, Sojka D, Ascencio M, et al. Babesia life cycle-when phylogeny meets biology[J]. Trends Parasitol, 2019, 35(5): 356-368.
doi: S1471-4922(19)30020-0 pmid: 30733093 |
[5] | Chen MX, Liu Q, Xue JB, et al. Spreading of human babesiosis in China: current epidemiological status and future challenges[J]. China CDC Wkly, 2020, 2(33): 634-637. |
[6] |
Sun Y, Liu GP, Yang LW, et al. Babesia microti-like rodent parasites isolated from Ixodes persulcatus (Acari ∶ Ixodidae) in Heilongjiang Province, China[J]. Vet Parasitol, 2008, 156(3/4): 333-339.
doi: 10.1016/j.vetpar.2008.05.026 |
[7] | Wei FR, Lan QX, Zhu D, et al. Investigation on Babesia in ticks infested on police dogs in selected areas of China[J]. Chin J Parasitol Parasit Dis, 2012, 30(5): 390-392. (in Chinese) |
危芙蓉, 兰勤娴, 朱丹, 等. 中国部分地区警犬体表寄生蜱的巴贝虫感染情况调查[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(5): 390-392. | |
[8] | Genchi C. Human babesiosis, an emerging zoonosis[J]. Parassitologia, 2007, 49(Suppl 1): 29-31. |
[9] |
Young KM, Corrin T, Wilhelm B, et al. Zoonotic Babesia: a scoping review of the global evidence[J]. PLoS One, 2019, 14(12): e0226781.
doi: 10.1371/journal.pone.0226781 |
[10] | Zhang Y, Xu AF, Zhang JQ, et al. Differential diagnosis of a case of Babesia microti infection previously misdiagnosed as malaria[J]. Chin J Parasitol Parasit Dis, 2020, 38(4): 445-448. (in Chinese) |
( 张艳, 徐爱芳, 张家祺, 等. 1例误诊为疟疾的田鼠巴贝虫病患者的鉴别诊断[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(4): 445-448.) | |
[11] |
Li LH, Wang JZ, Zhu D, et al. Detection of novel piroplasmid species and Babesia microti and Theileria orientalis genotypes in hard ticks from Tengchong County, Southwest China[J]. Parasitol Res, 2020, 119(4): 1259-1269.
doi: 10.1007/s00436-020-06622-6 |
[12] | Zhu XP, Su C, Wu ZD, et al. Human parasitology[M]. 8th ed. Beijing: People’s Medical Publishing House, 2018: 80-81. (in Chinese) |
( 诸欣平, 苏川, 吴忠道, 等. 人体寄生虫学[M]. 8版. 北京: 人民卫生出版社, 2018: 80-81.) | |
[13] |
Elsworth B, Duraisingh MT. A framework for signaling throughout the life cycle of Babesia species[J]. Mol Microbiol, 2021, 115(5): 882-890.
doi: 10.1111/mmi.14650 |
[14] |
Man SQ, Qiao K, Cui J, et al. A case of human infection with a novel Babesia species in China[J]. Infect Dis Poverty, 2016, 5: 28.
doi: 10.1186/s40249-016-0121-1 |
[15] | Lu Y, Cai YC, Chen SH, et al. Establishment of the experimental animal model of Babesia microti[J]. Chin J Parasitol Parasit Dis, 2012, 30(6): 423-427. (in Chinese) |
( 卢艳, 蔡玉春, 陈韶红, 等. 田鼠巴贝虫实验动物模型的建立[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(6): 423-427.) | |
[16] | Cai YC, Chen SH, Yang CL, et al. Dynamics of routine blood tests in BALB/c mice with Babesia microti infection[J]. Chin J Schisto Control, 2018, 30(3): 300-306. (in Chinese) |
( 蔡玉春, 陈韶红, 杨春利, 等. 田鼠巴贝虫感染BALB/c小鼠血细胞动态变化[J]. 中国血吸虫病防治杂志, 2018, 30(3): 300-306. ) | |
[17] |
Man SQ, Fu YF, Guan Y, et al. Evaluation of a major surface antigen of Babesia microti merozoites as a vaccine candidate against Babesia infection[J]. Front Microbiol, 2017, 8: 2545.
doi: 10.3389/fmicb.2017.02545 |
[18] |
Adachi K, Matsuda T, Makimura S. Failure of killed Corynebacterium parvum in induction of protection in C57BL/6 mice against Babesia rodhaini challenge infection[J]. J Vet Med Sci, 1993, 55(6): 1025-1026.
pmid: 8117798 |
[19] | Akoolo L, Djokic V, Rocha SC, et al. Pathogenesis of Borrelia burgdorferi and Babesia microti in TLR4-competent and TLR4-dysfunctional C3H mice[J]. Cell Microbiol, 2021, 23(9): e13350. |
[20] |
Djokic V, Akoolo L, Parveen N. Babesia microti infection changes host spleen architecture and is cleared by a Th1 immune response[J]. Front Microbiol, 2018, 9: 85.
doi: 10.3389/fmicb.2018.00085 |
[21] |
Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice[J]. J Immunol, 1995, 154(1): 180-191.
pmid: 7995938 |
[22] |
Krogstad DJ, Sutera SP, Boylan CW, et al. Intraerythrocytic parasites and red cell deformability: Plasmodium berghei and Babesia microti[J]. Blood Cells, 1991, 17(1): 209-221.
pmid: 2018857 |
[23] | Yin M, Zhang HB, Tao Y, et al. Evaluation on the in vivo efficacy of malarone and atovaquone-azithromycin combination against Babesia microti in mice under different immune status[J]. Chin J Parasitol Parasit Dis, 2021, 39(5): 659-665, 673. (in Chinese) |
( 殷梦, 张皓冰, 陶奕, 等, 马拉龙和阿托伐醌+阿奇霉素在不同免疫状态小鼠体内的抗田鼠巴贝虫药效评价[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 659-665, 673.) | |
[24] |
Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes[J]. Immunity, 2018, 49(4): 595-613.
doi: S1074-7613(18)30446-1 pmid: 30332628 |
[1] | SUN Jiahui, SONG Peng, CHEN Muxin, ZHOU Yan, LIN Lin, CHEN Jiaxu, CAI Yuchun. Expression and functional analysis of recombinant peptidyl-prolyl cis-trans isomerase gene of Babesia microti [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(1): 29-35. |
[2] | HUANG Yuan-yuan, YAO Shi-jie, BIAN Zhi-fang, WEN Yi-xin, ZHENG Li, CAO Ya-ming. Immunoprotective effect of dexamethasone on experimental cerebral malaria in mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(4): 446-453. |
[3] | ZHANG Xiao-cheng, GAO Yuan, HU Yuan, CAO Jian-ping. Preliminary study on the changes of plymorphonucler myeloid-derived suppressor cells in the spleen of mice infected with Schistosoma japonicum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 330-336. |
[4] | HOU Jiao, WEN Hao, WANG Ming-kun, LI Wen-ding, LI liang, LI Jing, ZHANG Chuan-shan, WANG Hui. Changes of macrophage subsets and polarization in spleen of mice infected with Echinococcus multilocularis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(6): 771-778. |
[5] | YIN Meng, ZHANG Hao-bing, TAO Yi, JIANG Bin, LIU Hua. Evaluation on the in vivo efficacy of malarone and atovaquone-azithromycin combination against Babesia microti in mice under different immune status [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(5): 659-665. |
[6] | LI Ling-hui, WANG Wei, HOU Xin-ling, SHI Yang, LI De-wei, LI Liang, WANG Hui, LI Jing, ZHANG Chuan-shan. Affects of Echinococcus multilocularis metacestode infection on the natural killer T cells and their subsets in mouse spleen [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2021, 39(3): 311-317. |
[7] | HOU Xin-ling, LI Ling-hui, LI Liang, LI Jing, WANG Hui, SHAO Ying-mei, ZHANG Chuan-shan. Changes in subsets and functional exhaustion of CD4+ T cells in spleens of mice infected with Echinococcus multilocularis [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(5): 611-618. |
[8] | ZHANG Yan, XU Ai-fang, ZHANG Jia-qi, YAO Li-nong, GU Kai-long, XUE Li-zhi, PAN Ke-nv. Differential diagnosis of a case of Babesia microti infection previously misdiagnosed as malaria [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(4): 445-448. |
[9] | Jie-sen ZHANG, Meng-xin ZHANG, Meng-yi HAN, Bing-xia CHEN, Yong-sen LI, Chen-xi JIN, Yan-wei QI. Affects of Plasmodium berghei infection in mice on spleen B cells and natural killer cells and their surface molecules [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2020, 38(2): 255-258. |
[10] | Zi-yue WANG, Yi-chao YANG, Zhi-pin CHEN, Yun-liang SHI. Infection of Plasmodium knowlesi and Babesia microti in farmed monkeys in Guangxi [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2019, 37(4): 494-496. |
[11] | Xiu-feng LIU, Jia-hui SUN, Bin XU, Jun-hu CHEN, Wei HU. Expression and evaluation of diagnostic candidate antigens from Babesia microti [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(6): 549-553. |
[12] | Wei RUAN, Ling-ling ZHANG, Hua-liang CHEN, Qiao-yi LU, Xuan ZHANG, Yan FENG, Li-nong YAO. Investigation of the source regions of Babesia spp. infection in the central and south areas of Zhejiang Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(2): 125-130. |
[13] | Fang-zhen XIAO, Xiu-qing Peng, Guo-ying XU, Yang CHEN, Dai-hua LIN, Yan-qin DENG. Investigation and genetic identification on Babesia infection in rodents in some areas of Fujian Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(1): 63-67. |
[14] | CHENKe-qiang;;ZHUHuai-min;NICan-rong;SONGGuan-hong*. Maturation of Dendritic Cells and Activation of B-lymphocytes in Spleens of ICR Mice Infected with Chloroquine-resistant Plasmodium berghei [J]. , 2008, 26(1): 1-5. |
[15] | CHENJia-lin~;TAOJun~;CAIWei-min~;ZHANGYan-ping~. Content Change of CollagenⅠ, Ⅲ in Liver and Spleen of Patients with Advanced Schistosomiasis Japonica [J]. , 2003, 21(6): 2-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||