CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES ›› 2017, Vol. 35 ›› Issue (5): 503-508.
• Orginal Article • Previous Articles Next Articles
Received:
2017-04-05
Online:
2017-10-30
Published:
2018-01-08
Contact:
Hong-juan PENG
E-mail:hongjuan@smu.edu.cn
Supported by:
CLC Number:
Li-jie YAO, Hong-juan PENG. Research advances on the inhibition of interferon-γ-dependent cellular immunity by Toxoplasma gondii[J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2017, 35(5): 503-508.
[1] | Montoya JG, Liesenfeld O.Toxoplasmosis[J]. Lancet, 2004, 363(9425): 1965-1976. |
[2] | Dubey JP, Lindsay DS, Speer CA.Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts[J]. Clin Microbiol Rev, 1998, 11(2): 267-299. |
[3] | 白晨倩, 王东, 姚志军, 等. 河南省HIV携带者刚地弓形虫感染情况[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(1): 84-86. |
[4] | Li XL, Wei HX, Zhang H, et al. A meta analysis on risks of adverse pregnancy outcomes in Toxoplasma gondii infection[J]. PLoS One, 2014, 9(5): e97775. |
[5] | 张居作, 陈汉忠, 徐君飞. 我国弓形虫的感染现状[J]. 动物医学进展, 2008, 29(7): 101-104. |
[6] | 杨培梁, 陈晓光. 弓形虫表观遗传学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 32(3): 228-232. |
[7] | Yap GS, Sher A.Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (IFN)-γ- and tumor necrosis factor (TNF)-α-dependent host resistance to the intracellular pathogen, Toxoplasma gondii[J]. J Exp Med, 1999, 189(7):1083-1092. |
[8] | Gazzinelli RT, Wysocka M, Hayashi S, et al. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii[J]. J Immuno, 1994, 153(6):2533-2543. |
[9] | Suzuki Y, Conley FK, Remington JS.Importance of endogenous IFN-gamma for prevention of toxoplasmic encephalitis in mice[J]. J Immuno, 1989, 143(6): 2045-2050. |
[10] | Däubener W, Posdziech V, Hadding U, et al. Inducible anti-parasitic effector mechanisms in human uroepithelial cells: tryptophan degradation vs. NO production[J]. Med Microbiol Immuno, 1999, 187(3): 143-147. |
[11] | Nagineni CN, Pardhasaradhi K, Martins MC, et al. Mechanisms of interferon-induced inhibition of Toxoplasma gondii replication in human retinal pigment epithelial cells[J]. Infect Immun, 1996, 64(10): 4188-4196. |
[12] | Aline F, Bout D, Dimierpoisson I.Dendritic cells as effector cells: gamma interferon activation of murine dendritic cells triggers oxygen-dependent inhibition of Toxoplasma gondii replication[J]. Infect Immun, 2002, 70(5): 2368-2374. |
[13] | Deckert-Schlüter M, Rang A, Weiner D, et al. Interferon-gamma receptor-deficiency renders mice highly susceptible to toxoplasmosis by decreased macrophage activation[J]. Lab invest, 1996, 75(6): 827-841. |
[14] | Gavrilescu LC, Butcher BA, Del RL, et al. STAT1 is essential for antimicrobial effector function but dispensable for gamma interferon production during Toxoplasma gondii infection[J]. Infect Immun, 2004, 72(3): 1257-1264. |
[15] | Lieberman LA, Banica M, Reiner SL, et al. STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis[J]. J Immun, 2004, 172(1): 457-463. |
[16] | Lüder CGK, Walter W, Beuerle B, et al. Toxoplasma gondii down-regulates MHC class Ⅱ gene expression and antigen presentation by murine macrophages via interference with nuclear translocation of STAT1 alpha[J]. Eur J Immunol, 2001, 31(5): 1475-1484. |
[17] | Shapira S, Harb OS, Margarit J, et al. Initiation and termination of NF-kappa B signaling by the intracellular protozoan parasite Toxoplasma gondii[J]. J Cell Sci, 2005, 118(15): 3501-3508. |
[18] | Hunter CA, Sibley LD.Modulation of innate immunity by Toxoplasma gondii virulence effectors[J]. Nat Rev Microbiol, 2012, 10(11): 766. |
[19] | Kim SK, Fouts AE, Boothroyd JC.Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling[J]. J Immun, 2007, 178(8): 5154-5165. |
[20] | Olias P, Etheridge RD, Zhang Y, et al. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression[J]. Cell Host Microbe, 2016, 20(1): 72-82. |
[21] | Rosowski EE, Nguyen QP, Camejo A, et al. Toxoplasma gondii inhibits gamma interferon (IFN-γ)- and IFN-β-induced host cell STAT1 transcriptional activity by increasing the association of STAT1 with DNA[J]. Infect Immun, 2014, 82(2): 706-719. |
[22] | Rosowski EE, Saeij JP.Toxoplasma gondii clonal strains all inhibit STAT1 transcriptional activity but polymorphic effectors differentially modulate IFN-γ induced gene expression and STAT1 phosphorylation[J]. PLoS One, 2012, 7(12): e51448. |
[23] | Schneider AG, Abdallah DSA, Butcher BA, et al. Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNγ-induced STAT1 transcriptional activity[J]. PLoS One, 2013, 8(3): e60215. |
[24] | Zimmermann S, Murray PJ, Heeg K, et al. Induction of suppressor of cytokine signaling-1 by Toxoplasma gondii contributes to immune evasion in macrophages by blocking IFN-gamma signaling[J]. J Immun, 2006, 176(3): 1840-1847. |
[25] | Lang C, Hildebrandt A, Brand F, et al. Impaired chromatin remodelling at STAT1-regulated promoters leads to global unresponsiveness of Toxoplasma gondii-Infected macrophages to IFN-γ[J]. PLoS Pathog, 2012, 8(1): e1002483. |
[26] | Lüder CG, Algner M, Lang C, et al. Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages[J]. Int J Parasitol, 2003, 33(8): 833-844. |
[27] | Lüder CG, Lang T, Beuerle B, et al. Down-regulation of MHC classⅡmolecules and inability to up-regulate classⅠmolecules in murine macrophages after infection with Toxoplasma gondii[J]. Clin Exp Immunol, 1998, 112(2): 308-316. |
[28] | Zhi L, Zhao ZJ, Zhu XQ, et al. Differences in iNOS and arginase expression and activity in the macrophages of rats are responsible for the resistance against T. gondii Infection[J]. PLoS One, 2012, 7(4): e35834. |
[29] | Murray HW, Cohn ZA.Macrophage oxygen-dependent antimicrobial activity.Ⅰ. Susceptibility of Toxoplasma gondii to oxygen intermediates[J]. J Exp Med, 1979, 150(4): 938-949. |
[30] | Howard JC, Hunn JP, Steinfeldt T.The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii[J]. Curr Opin Microbiol, 2011, 14(4): 414-421. |
[31] | Yamamoto M, Okuyama M, Ma JS, et al. A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii[J]. Immunity, 2012, 37(2): 302-313. |
[32] | Choi J, Park S, Biering SB, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy[J]. Immunity, 2014, 40(6): 924-935. |
[33] | Ohshima J, Lee Y, Sasai M, et al. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii[J]. J Immun, 2014, 192(7): 3328-3335. |
[34] | Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence[J]. Cell Host Microbe, 2010, 8(6): 484-495. |
[35] | Fentress SJ, Steinfeldt T, Howard JC, et al. The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of Toxoplasma gondii[J]. Cell Microbiol, 2012, 14(12): 1921-1933. |
[36] | Steinfeldt T, Könen-Waisman S, Tong L, et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii[J]. PLoS Biol, 2010, 8(12): e1000576. |
[37] | Clough B, Wright JD, Pereira PM, et al. K63-linked ubiquitination targets Toxoplasma gondii for endo-lysosomal destruction in IFN-γ-stimulated human cells[J]. PLoS Pathog, 2016, 12(11): e1006027. |
[38] | Niedelman W, Gold DA, Rosowski EE, et al. The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response[J]. PLoS Pathog, 2012, 8(6): e1002784. |
[39] | Pfefferkorn ER.Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan[J]. Proc Natl Acad Sci USA, 1984, 81(3): 908-912. |
[40] | Niedelman W, Sprokholt JK, Clough B, et al. Cell death of gamma interferon-stimulated human fibroblasts upon Toxoplasma gondii infection induces early parasite egress and limits parasite replication[J]. Infec Immun, 2013, 81(12): 4341-4349. |
[41] | Dimier IH, Bout DT.Inhibition of Toxoplasma gondii replication in IFN-gamma-activated human intestinal epithelial cells[J]. Immunol Cell Biol, 1997, 75(5): 511-514. |
[42] | Woodman JP, Dimier IH, Bout DT.Human endothelial cells are activated by IFN-gamma to inhibit Toxoplasma gondii replication. Inhibition is due to a different mechanism from that existing in mouse macrophages and human fibroblasts[J]. J Immun, 1991, 147(6): 2019-2023. |
[43] | Van Grol J, Muniz-Feliciano L, Portillo JA, et al. CD40 induces anti-Toxoplasma gondii activity in nonhematopoietic cells dependent on autophagy proteins[J]. Infect Immun, 2013, 81(6): 2002-2011. |
[44] | Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells[J]. MBio, 2014, 6(5): 1115-1157. |
[45] | Johnston AC, Piro A, Clough B, et al. Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii[J]. Cellr Microbiol, 2016, 18(8): e1056-1064. |
[46] | Qin A, Lai DH, Liu Q, et al. Guanylate-binding protein 1 (GBP1) contributes to the immunity of human mesenchymal stromal cells against Toxoplasma gondii[J]. Proc Natl Acad Sci USA, 2017, 114(6): 1365-1370. |
[47] | 崔霁欣. 致病细菌效应蛋白家族通过修饰泛素/NEDD8阻断宿主泛素化通路[D]. 北京: 北京协和医学院, 2010. |
[48] | Cui J, Yao Q, Li S, et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 by a bacterial effector family[J]. Science, 2011, 329(5996): 1215-1218. |
[49] | 李润花, 张铁娥, 殷国荣. 刚地弓形虫棒状体蛋白2家族作为疫苗候选分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(3): 222-227. |
[50] | Haldar AK, Foltz C, Finethy R, et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins[J]. Proc Natl Acad Sci USA, 2015, 112(41): 5628-5637. |
[51] | Taylor S, Barragan A, Su C, et al. A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii[J]. Science, 2006, 314(5806): 1776-1780. |
[52] | Zhou Y, Zhu Y.Diversity of bacterial manipulation of the host ubiquitin pathways[J]. Cell Microbiol, 2015, 17(1): 26-34. |
[53] | Robinson PA.Ubiquitin-protein ligases[J]. J Cell Sci, 2004, 117(22): 5191-5194. |
[54] | 夏菁, 彭鸿娟. 刚地弓形虫毒力调节因子研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(4): 297-300. |
[55] | Haldar AK, Piro AS, Finethy R, et al. Chlamydia trachomatis is resistant to inclusion ubiquitination and associated host defense in gamma interferon-primed human epithelial cells[J]. MBio, 2016, 7(6): e1416-e1417. |
[1] | LI Jing, YANG Shufeng, GAO Wenwei, LIU Qing, ZHU Xingquan, ZHENG Wenbin. Infection status and genotype identification of Toxoplasma gondii in pigs in Jinzhong City, Shanxi Province [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(3): 367-371. |
[2] | XIE Xiaoman, SUN Hang, DAI Lisha, ZHU Wenju, WANG Lilei, XIE Huanhuan, DONG Hongjie, ZHANG Junmei, WANG Qi, ZHOU Beibei, ZHAO Guihua, XU Chao, YIN Kun. Effect of Toxoplasma gondii infection on m6A methylation modification of transcripts in mice brain tissue [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(1): 27-35. |
[3] | ZHENG Guangfu, LIU Xianbing, JIANG Yuzhu, LI Xinyu, HU Xuemei, ZHANG Haixia. Imvolvement of placental neutrophils and IL-17 in adverse pregnancy outcome caused by Toxoplasma gondii infection in pregnant mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2024, 42(1): 48-54. |
[4] | XUE Yushan, LIN Ping, CHENG Xunjia, FENG Meng. Damage caused by chronic infection of Toxoplasma gondii on the host central nervous system and its mechanism [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 527-531. |
[5] | JIANG Wenjing, MENG Yali, ZHAO Lina, WANG Chunmiao, ZHANG Xiaolei. Immunoprotection of nuclei acid vaccine dual-targeting rhoptry protein 18 and surface antigen 30 of Toxoplasma gondii in mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(5): 532-538. |
[6] | ZHAO Ziqi, LV Fangli. Study on the inhibitory effect of artemether liposome on Toxoplasma gondii proliferation in vitro [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 446-451. |
[7] | ZHANG Xu, SUN Ximeng. Research progress on the immune evasion mechanism in Trichinella spiralis infection [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(4): 492-496. |
[8] | ZHANG Chi, CHEN Jiating, XIN Zixuan, YANG Lili, YANG Zihan, PENG Hongjuan. Transcriptome analysis of mice brain chronically infected with Toxoplasma gondii and validation of the kynurenine pathway associated with depression [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 270-278. |
[9] | OU Yangran, LIU Xingzhuo, HUANG Shiguang, LYU Fangli. Effect of locking galectin-receptor interaction on the immunopathology of small intestine of Toxoplasma gondii-infected mice [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 279-285. |
[10] | XU Shaojie, CHEN Shenbo, CHEN Junhu. Research progress on transcription regulation of rif gene in Plasmodium falciparum [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 374-379. |
[11] | DU Juan, LI Jia, WU Di, YU Qi, ZHANG Wei, BAI Runian, GUO Junlin, LIU Qingbin, LEI Qili, GU Chuanhui, WANG Meng, ZHAO Haojun. Seroepidemiological survey of Toxoplasma gondii infection in dogs and cats in Beijing 2022 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2023, 41(3): 389-392. |
[12] | LI Jia-ming, WANG Yi-xuan, YANG Ning-ai, MA Hui-hui, LAN Min, LIU Chun-lan, ZHAO Zhi-jun. Effects of ROP16 protein of Toxoplasma gondii on polarization and apoptosis of MH-S cells and their related mechanisms [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 579-586. |
[13] | ZOU Wei-hao, WU Wei-ling, LIAO Yuan-peng, CHEN Min, PENG Hong-juan. Preparation and application of monoclonal antibody against Toxoplasma gondii bradyzoite antigen 1 [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 587-593. |
[14] | DAI Li-sha, ZHANG Li-xin, YIN Kun. Research advances in Toxoplasma gondii induced host mental-behavioural disorders [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(5): 642-646. |
[15] | WANG Jie, WEN Hong-yang, CHEN Ying, AN Ran, LUO Qing-li, SHEN Ji-long, DU Jian. Construction and identification of macrophage migration inhibitory factor gene knockout strain of Toxoplasma gondii [J]. CHINESE JOURNAL OF PARASITOLOGY AND PARASITIC DISEASES, 2022, 40(3): 349-354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||