[1] | Montoya JG, Liesenfeld O.Toxoplasmosis[J]. Lancet, 2004, 363(9425): 1965-1976. | [2] | Dubey JP, Lindsay DS, Speer CA.Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts[J]. Clin Microbiol Rev, 1998, 11(2): 267-299. | [3] | 白晨倩, 王东, 姚志军, 等. 河南省HIV携带者刚地弓形虫感染情况[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(1): 84-86. | [4] | Li XL, Wei HX, Zhang H, et al. A meta analysis on risks of adverse pregnancy outcomes in Toxoplasma gondii infection[J]. PLoS One, 2014, 9(5): e97775. | [5] | 张居作, 陈汉忠, 徐君飞. 我国弓形虫的感染现状[J]. 动物医学进展, 2008, 29(7): 101-104. | [6] | 杨培梁, 陈晓光. 弓形虫表观遗传学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012, 32(3): 228-232. | [7] | Yap GS, Sher A.Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (IFN)-γ- and tumor necrosis factor (TNF)-α-dependent host resistance to the intracellular pathogen, Toxoplasma gondii[J]. J Exp Med, 1999, 189(7):1083-1092. | [8] | Gazzinelli RT, Wysocka M, Hayashi S, et al. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii[J]. J Immuno, 1994, 153(6):2533-2543. | [9] | Suzuki Y, Conley FK, Remington JS.Importance of endogenous IFN-gamma for prevention of toxoplasmic encephalitis in mice[J]. J Immuno, 1989, 143(6): 2045-2050. | [10] | Däubener W, Posdziech V, Hadding U, et al. Inducible anti-parasitic effector mechanisms in human uroepithelial cells: tryptophan degradation vs. NO production[J]. Med Microbiol Immuno, 1999, 187(3): 143-147. | [11] | Nagineni CN, Pardhasaradhi K, Martins MC, et al. Mechanisms of interferon-induced inhibition of Toxoplasma gondii replication in human retinal pigment epithelial cells[J]. Infect Immun, 1996, 64(10): 4188-4196. | [12] | Aline F, Bout D, Dimierpoisson I.Dendritic cells as effector cells: gamma interferon activation of murine dendritic cells triggers oxygen-dependent inhibition of Toxoplasma gondii replication[J]. Infect Immun, 2002, 70(5): 2368-2374. | [13] | Deckert-Schlüter M, Rang A, Weiner D, et al. Interferon-gamma receptor-deficiency renders mice highly susceptible to toxoplasmosis by decreased macrophage activation[J]. Lab invest, 1996, 75(6): 827-841. | [14] | Gavrilescu LC, Butcher BA, Del RL, et al. STAT1 is essential for antimicrobial effector function but dispensable for gamma interferon production during Toxoplasma gondii infection[J]. Infect Immun, 2004, 72(3): 1257-1264. | [15] | Lieberman LA, Banica M, Reiner SL, et al. STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis[J]. J Immun, 2004, 172(1): 457-463. | [16] | Lüder CGK, Walter W, Beuerle B, et al. Toxoplasma gondii down-regulates MHC class Ⅱ gene expression and antigen presentation by murine macrophages via interference with nuclear translocation of STAT1 alpha[J]. Eur J Immunol, 2001, 31(5): 1475-1484. | [17] | Shapira S, Harb OS, Margarit J, et al. Initiation and termination of NF-kappa B signaling by the intracellular protozoan parasite Toxoplasma gondii[J]. J Cell Sci, 2005, 118(15): 3501-3508. | [18] | Hunter CA, Sibley LD.Modulation of innate immunity by Toxoplasma gondii virulence effectors[J]. Nat Rev Microbiol, 2012, 10(11): 766. | [19] | Kim SK, Fouts AE, Boothroyd JC.Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling[J]. J Immun, 2007, 178(8): 5154-5165. | [20] | Olias P, Etheridge RD, Zhang Y, et al. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression[J]. Cell Host Microbe, 2016, 20(1): 72-82. | [21] | Rosowski EE, Nguyen QP, Camejo A, et al. Toxoplasma gondii inhibits gamma interferon (IFN-γ)- and IFN-β-induced host cell STAT1 transcriptional activity by increasing the association of STAT1 with DNA[J]. Infect Immun, 2014, 82(2): 706-719. | [22] | Rosowski EE, Saeij JP.Toxoplasma gondii clonal strains all inhibit STAT1 transcriptional activity but polymorphic effectors differentially modulate IFN-γ induced gene expression and STAT1 phosphorylation[J]. PLoS One, 2012, 7(12): e51448. | [23] | Schneider AG, Abdallah DSA, Butcher BA, et al. Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNγ-induced STAT1 transcriptional activity[J]. PLoS One, 2013, 8(3): e60215. | [24] | Zimmermann S, Murray PJ, Heeg K, et al. Induction of suppressor of cytokine signaling-1 by Toxoplasma gondii contributes to immune evasion in macrophages by blocking IFN-gamma signaling[J]. J Immun, 2006, 176(3): 1840-1847. | [25] | Lang C, Hildebrandt A, Brand F, et al. Impaired chromatin remodelling at STAT1-regulated promoters leads to global unresponsiveness of Toxoplasma gondii-Infected macrophages to IFN-γ[J]. PLoS Pathog, 2012, 8(1): e1002483. | [26] | Lüder CG, Algner M, Lang C, et al. Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages[J]. Int J Parasitol, 2003, 33(8): 833-844. | [27] | Lüder CG, Lang T, Beuerle B, et al. Down-regulation of MHC classⅡmolecules and inability to up-regulate classⅠmolecules in murine macrophages after infection with Toxoplasma gondii[J]. Clin Exp Immunol, 1998, 112(2): 308-316. | [28] | Zhi L, Zhao ZJ, Zhu XQ, et al. Differences in iNOS and arginase expression and activity in the macrophages of rats are responsible for the resistance against T. gondii Infection[J]. PLoS One, 2012, 7(4): e35834. | [29] | Murray HW, Cohn ZA.Macrophage oxygen-dependent antimicrobial activity.Ⅰ. Susceptibility of Toxoplasma gondii to oxygen intermediates[J]. J Exp Med, 1979, 150(4): 938-949. | [30] | Howard JC, Hunn JP, Steinfeldt T.The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii[J]. Curr Opin Microbiol, 2011, 14(4): 414-421. | [31] | Yamamoto M, Okuyama M, Ma JS, et al. A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii[J]. Immunity, 2012, 37(2): 302-313. | [32] | Choi J, Park S, Biering SB, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy[J]. Immunity, 2014, 40(6): 924-935. | [33] | Ohshima J, Lee Y, Sasai M, et al. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii[J]. J Immun, 2014, 192(7): 3328-3335. | [34] | Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence[J]. Cell Host Microbe, 2010, 8(6): 484-495. | [35] | Fentress SJ, Steinfeldt T, Howard JC, et al. The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of Toxoplasma gondii[J]. Cell Microbiol, 2012, 14(12): 1921-1933. | [36] | Steinfeldt T, Könen-Waisman S, Tong L, et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii[J]. PLoS Biol, 2010, 8(12): e1000576. | [37] | Clough B, Wright JD, Pereira PM, et al. K63-linked ubiquitination targets Toxoplasma gondii for endo-lysosomal destruction in IFN-γ-stimulated human cells[J]. PLoS Pathog, 2016, 12(11): e1006027. | [38] | Niedelman W, Gold DA, Rosowski EE, et al. The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response[J]. PLoS Pathog, 2012, 8(6): e1002784. | [39] | Pfefferkorn ER.Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan[J]. Proc Natl Acad Sci USA, 1984, 81(3): 908-912. | [40] | Niedelman W, Sprokholt JK, Clough B, et al. Cell death of gamma interferon-stimulated human fibroblasts upon Toxoplasma gondii infection induces early parasite egress and limits parasite replication[J]. Infec Immun, 2013, 81(12): 4341-4349. | [41] | Dimier IH, Bout DT.Inhibition of Toxoplasma gondii replication in IFN-gamma-activated human intestinal epithelial cells[J]. Immunol Cell Biol, 1997, 75(5): 511-514. | [42] | Woodman JP, Dimier IH, Bout DT.Human endothelial cells are activated by IFN-gamma to inhibit Toxoplasma gondii replication. Inhibition is due to a different mechanism from that existing in mouse macrophages and human fibroblasts[J]. J Immun, 1991, 147(6): 2019-2023. | [43] | Van Grol J, Muniz-Feliciano L, Portillo JA, et al. CD40 induces anti-Toxoplasma gondii activity in nonhematopoietic cells dependent on autophagy proteins[J]. Infect Immun, 2013, 81(6): 2002-2011. | [44] | Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells[J]. MBio, 2014, 6(5): 1115-1157. | [45] | Johnston AC, Piro A, Clough B, et al. Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii[J]. Cellr Microbiol, 2016, 18(8): e1056-1064. | [46] | Qin A, Lai DH, Liu Q, et al. Guanylate-binding protein 1 (GBP1) contributes to the immunity of human mesenchymal stromal cells against Toxoplasma gondii[J]. Proc Natl Acad Sci USA, 2017, 114(6): 1365-1370. | [47] | 崔霁欣. 致病细菌效应蛋白家族通过修饰泛素/NEDD8阻断宿主泛素化通路[D]. 北京: 北京协和医学院, 2010. | [48] | Cui J, Yao Q, Li S, et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 by a bacterial effector family[J]. Science, 2011, 329(5996): 1215-1218. | [49] | 李润花, 张铁娥, 殷国荣. 刚地弓形虫棒状体蛋白2家族作为疫苗候选分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(3): 222-227. | [50] | Haldar AK, Foltz C, Finethy R, et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins[J]. Proc Natl Acad Sci USA, 2015, 112(41): 5628-5637. | [51] | Taylor S, Barragan A, Su C, et al. A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii[J]. Science, 2006, 314(5806): 1776-1780. | [52] | Zhou Y, Zhu Y.Diversity of bacterial manipulation of the host ubiquitin pathways[J]. Cell Microbiol, 2015, 17(1): 26-34. | [53] | Robinson PA.Ubiquitin-protein ligases[J]. J Cell Sci, 2004, 117(22): 5191-5194. | [54] | 夏菁, 彭鸿娟. 刚地弓形虫毒力调节因子研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015, 33(4): 297-300. | [55] | Haldar AK, Piro AS, Finethy R, et al. Chlamydia trachomatis is resistant to inclusion ubiquitination and associated host defense in gamma interferon-primed human epithelial cells[J]. MBio, 2016, 7(6): e1416-e1417. |
|