中国寄生虫学与寄生虫病杂志 ›› 2025, Vol. 43 ›› Issue (1): 124-128.doi: 10.12140/j.issn.1000-7423.2025.01.019
周檀芳()(
), 朱江, 徐心路, 祖力皮喀尔·图孙尼亚孜, 卡力比夏提·艾木拉江, 温浩*(
)(
)
收稿日期:
2024-10-19
修回日期:
2024-12-01
出版日期:
2025-02-28
发布日期:
2025-03-26
通讯作者:
温浩(ORCID:0000-0001-7144-220X),男,主任医师,教授,从事肝胆外科研究。E-mail:作者简介:
周檀芳(ORCID:0009-0002-8084-8329),女,硕士研究生,从事肝棘球蚴病研究。E-mail:fangtan1105@163.com
基金资助:
ZHOU Tanfang()(
), ZHU Jiang, XU Xinlu, ZULIPIKAER Tuersunniyazi, KALIBIXIATI Aimulajiang, WEN Hao*(
)(
)
Received:
2024-10-19
Revised:
2024-12-01
Online:
2025-02-28
Published:
2025-03-26
Contact:
E-mail: Supported by:
摘要:
棘球蚴病是由棘球绦虫幼虫感染引起的人兽共患寄生虫病。棘球蚴感染能够调节宿主的免疫应答,并改变宿主的免疫微环境,从而引发免疫和炎症反应。Toll样受体(TLR)作为一类模式识别受体,能够有效识别病原体相关分子模式。通过调控TLR表达与功能,可激活下游信号传导途径,这在棘球蚴病的宿主免疫应答中起重要作用。本文综述了TLR尤其是TLR2和TLR4在棘球蚴病研究中的最新进展,并探讨其在未来治疗中的潜在应用,旨在为棘球蚴病的预防和治疗提供新的思路。
中图分类号:
周檀芳, 朱江, 徐心路, 祖力皮喀尔·图孙尼亚孜, 卡力比夏提·艾木拉江, 温浩. Toll样受体介导的宿主免疫应答在棘球蚴病中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2025, 43(1): 124-128.
ZHOU Tanfang, ZHU Jiang, XU Xinlu, ZULIPIKAER Tuersunniyazi, KALIBIXIATI Aimulajiang, WEN Hao. Research progress on Toll-like receptors-mediated host immune responses in echinococcosis[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2025, 43(1): 124-128.
[1] |
Galeh TM, Spotin A, Mahami-Oskouei M, et al. The seroprevalence rate and population genetic structure of human cystic echinococcosis in the Middle East: A systematic review and meta-analysis[J]. Int J Surg, 2018, 51: 39-48.
doi: S1743-9191(18)30503-X pmid: 29367032 |
[2] | Casulli A, Siles-Lucas M, Tamarozzi F. Echinococcus granulosus sensu lato[J]. Trends Parasitol, 2019, 35(8): 663-664. |
[3] |
Spotin A, Mahami-Oskouei M, Harandi MF, et al. Genetic variability of Echinococcus granulosus complex in various geographical populations of Iran inferred by mitochondrial DNA sequences[J]. Acta Trop, 2017, 165: 10-16.
doi: S0001-706X(16)30092-4 pmid: 26948902 |
[4] | Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: Advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32(2): e00075-18. |
[5] |
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4): 783-801.
doi: 10.1016/j.cell.2006.02.015 pmid: 16497588 |
[6] | Rajasekaran S, Anuradha R, Bethunaickan R. TLR specific immune responses against helminth infections[J]. J Parasitol Res, 2017, 2017: 6865789. |
[7] |
达哇卓玛, 刘川川, 樊海宁. 细胞程序性死亡在棘球蚴病中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 259-266, 271.
doi: 10.12140/j.issn.1000-7423.2024.02.018 |
Dawa ZM, Liu CC, Fan HN. Research on the progress of programmed cell death in echinococcosis[J]. Chin J Parasitol Parasit Dis, 2024, 42(2): 259-266, 271. (in Chinese) | |
[8] | Li X, Zhang XC, Gong PT, et al. TLR2-/- mice display decreased severity of giardiasis via enhanced proinflammatory cytokines production dependent on AKT signal pathway[J]. Front Immunol, 2017, 8: 1186. |
[9] | Wei R, Li X, Wang XC, et al. Trypanosoma evansi evades host innate immunity by releasing extracellular vesicles to activate TLR2-AKT signaling pathway[J]. Virulence, 2021, 12(1): 2017-2036. |
[10] | Kalantari P. The emerging role of pattern recognition receptors in the pathogenesis of malaria[J]. Vaccines (Basel), 2018, 6(1): 13. |
[11] | Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: A review[J]. Scand J Immunol, 2019, 90(1): e12771. |
[12] | Gao Y, Nepal N, Jin SZ. Toll-like receptors and hepatitis C virus infection[J]. Hepatobiliary Pancreat Dis Int, 2021, 20(6): 521-529. |
[13] |
Thompson MR, Kaminski JJ, Kurt-Jones EA, et al. Pattern recognition receptors and the innate immune response to viral infection[J]. Viruses, 2011, 3(6): 920-940.
doi: 10.3390/v3060920 pmid: 21994762 |
[14] |
Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066.
doi: S0092-8674(20)30218-X pmid: 32164908 |
[15] |
Pascual M, Calvo-Rodriguez M, Núñez L, et al. Toll-like receptors in neuroinflammation, neurodegeneration, and alcohol-induced brain damage[J]. IUBMB Life, 2021, 73(7): 900-915.
doi: 10.1002/iub.2510 pmid: 34033211 |
[16] | 卢想, 谭思由, 张鑫, 等. Toll样受体家族在肝脏缺血再灌注损伤中的研究进展[J]. 河北医药, 2024, 46(18): 2842-2847. |
Lu X, Tan SY, Zhang X, et al. Progress of the Toll-like receptor family in hepatic ischemia-reperfusion injury[J]. Hebei Med J, 2024, 46(18): 2842-2847. (in Chinese) | |
[17] | Duan TH, Du Y, Xing CS, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13: 812774. |
[18] | Lim KH, Staudt LM. Toll-like receptor signaling[J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a011247. |
[19] | 罗芳, 叶俏. Toll样受体在系统性硬化病皮肤纤维化中的研究进展[J]. 中国现代医生, 2024, 62(24): 118-122. |
Luo F, Ye Q. Research progress of Toll-like receptor in skin fibrosis of systemic sclerosis[J]. China Mod Dr, 2024, 62(24): 118-122. (in Chinese) | |
[20] |
Woolsey ID, Miller AL. Echinococcus granulosus sensu lato and Echinococcus multilocularis: A review[J]. Res Vet Sci, 2021, 135: 517-522.
doi: 10.1016/j.rvsc.2020.11.010 pmid: 33246571 |
[21] | Zhu J, Zhou TF, Meng MG, et al. Ghrelin regulating liver activity and its potential effects on liver fibrosis and echinococcosis[J]. Front Cell Infect Microbiol, 2024, 13: 1324134. |
[22] |
Bakhtiar NM, Spotin A, Mahami-Oskouei M, et al. Recent advances on innate immune pathways related to host-parasite cross-talk in cystic and alveolar echinococcosis[J]. Parasit Vectors, 2020, 13(1): 232.
doi: 10.1186/s13071-020-04103-4 pmid: 32375891 |
[23] | Yang ZH, Ji SC, Liu L, et al. Promotion of TLR7-MyD88-dependent inflammation and autoimmunity in mice through stem-loop changes in Lnc-Atg16l1[J]. Nat Commun, 2024, 15(1):10224. |
[24] |
Zhang CS, Wang H, Tuerganaili AJ, et al. Author correction: Targeting myeloid-derived suppressor cells promotes antiparasitic T-cell immunity and enhances the efficacy of PD-1 blockade[J]. Nat Commun, 2024, 15(1): 7374.
doi: 10.1038/s41467-024-51832-6 pmid: 39191752 |
[25] | Jiang M, Broering R, Trippler M, et al. Toll-like receptor-mediated immune responses are attenuated in the presence of high levels of hepatitis B virus surface antigen[J]. J Viral Hepat, 2014, 21(12): 860-872. |
[26] | Uraki S, Tameda M, Sugimoto K, et al. Substitution in amino acid 70 of hepatitis C virus core protein changes the adipokine profile via toll-like receptor 2/4 signaling[J]. PLoS One, 2015, 10(6): e0131346. |
[27] | Tuxun T, Ma HZ, Apaer S, et al. Expression of toll-like receptors 2 and 4 and related cytokines in patients with hepatic cystic and alveolar echinococcosis[J]. Mediators Inflamm, 2015, 2015: 632760. |
[28] | Hou J, Li LL, Dong D, et al. Glycomolecules in Echinococcus granulosus cyst fluid inhibit TLR4-mediated inflammatory responses via c-Raf[J]. Cell Mol Immunol, 2020, 17(4): 423-425. |
[29] | Moradkhani MA, Spotin A, Mahami-Oskouei M, et al. A clinical association between Toll-like receptor 2 Arg753Gln polymorphism with recurrent cystic echinococcosis in postsurgery patients: A case control study[J]. Comp Immunol Microbiol Infect Dis, 2019, 66: 101336. |
[30] |
Mukherjee S, Karmakar S, Babu SP. TLR2 and TLR4 mediated host immune responses in major infectious diseases: A review[J]. Braz J Infect Dis, 2016, 20(2): 193-204.
doi: 10.1016/j.bjid.2015.10.011 pmid: 26775799 |
[31] | Silva-Lagos L, Ijaz A, Buwalda P, et al. Immunostimulatory effects of isomalto/malto-polysaccharides via TLR2 and TLR4 in preventing doxycycline-induced cytokine loss[J]. Carbohydr Polym, 2025, 350: 122980. |
[32] | Zhou TF, Xu XL, Zhu J, et al. Association of IL-9 cytokines with hepatic injury in Echinococcus granulosus infection[J]. Biomolecules, 2024, 14(8): 1007. |
[33] | Apaer S, Tuxun T, Ma HZ, et al. Expression of Toll-like receptor 2, 4 and related cytokines in intraperitoneally inoculated Balb/C mice with Echinococcus multilocularis[J]. Int J Clin Exp Pathol, 2017, 10(7): 7947-7955. |
[34] | 阿卜杜萨拉木•艾尼, 吐尔洪江•吐逊, 马海长, 等. Toll样受体mRNA和相关细胞因子在肝多房棘球蚴病患者体内的变化[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(6): 542-546. |
Abudusalamu AN, Tuerhongjiang TX, MA HZ, et al. Changes of toll-like receptor mRNA and related cytokines in patients with hepatic alveolar echinococcosis[J]. Chin J Parasitol Parasit Dis, 2016, 34(6): 542-546. (in Chinese) | |
[35] |
Noori J, Spotin A, Ahmadpour E, et al. The potential role of Toll-like receptor 4 Asp299Gly polymorphism and its association with recurrent cystic echinococcosis in postoperative patients[J]. Parasitol Res, 2018, 117(6): 1717-1727.
doi: 10.1007/s00436-018-5850-6 pmid: 29602972 |
[36] |
Shan JY, Ji WZ, Li HT, et al. TLR2 and TLR4 expression in peripheral blood mononuclear cells of patients with chronic cystic echinococcosis and its relationship with IL-10[J]. Parasite Immunol, 2011, 33(12): 692-696.
doi: 10.1111/j.1365-3024.2011.01335.x pmid: 21923667 |
[37] | Pan W, Xu HW, Hao WT, et al. The excretory-secretory products of Echinococcus granulosus protoscoleces stimulated IL-10 production in B cells via TLR-2 signaling[J]. BMC Immunol, 2018, 19(1): 29. |
[38] | Qian YY, Huang FF, Chen SY, et al. Therapeutic effect of recombinant Echinococcus granulosus antigen B subunit 2 protein on sepsis in a mouse model[J]. Parasit Vectors, 2024, 17(1): 467. |
[39] |
秦敏, 王立英. 阿苯达唑联合药物治疗棘球蚴病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 647-655.
doi: 10.12140/j.issn.1000-7423.2022.05.013 |
Qin M, Wang LY. Research progress on combined use of drugs with albendazole in the treatment of echinococcosis[J]. Chin J Parasitol Parasit Dis, 2022, 40(5): 647-655. (in Chinese) | |
[40] |
Yarandi SS, Kulkarni S, Saha M, et al. Intestinal bacteria maintain adult enteric nervous system and nitrergic neurons via Toll-like receptor 2-induced neurogenesis in mice[J]. Gastroenterology, 2020, 159(1): 200-213.e8.
doi: S0016-5085(20)30404-2 pmid: 32234538 |
[41] |
Engelmann C, Sheikh M, Sharma S, et al. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure[J]. J Hepatol, 2020, 73(1): 102-112.
doi: S0168-8278(20)30028-3 pmid: 31987990 |
[42] |
Nguyen J, Jiao JJ, Smoot K, et al. Toll-like receptor 4: A target for chemoprevention of hepatocellular carcinoma in obesity and steatohepatitis[J]. Oncotarget, 2018, 9(50): 29495-29507.
doi: 10.18632/oncotarget.25685 pmid: 30034633 |
[43] | 徐路阳, 张倩, 何冉. 纳米材料与技术在包虫病防治上的应用[J]. 中国兽医学报, 2023, 43(1): 217-222. |
Xu LY, Zhang Q, He R. Application of nanomaterial and nanotechnology in the prevention and treatment of hydatidosis[J]. Chin J Vet Sci, 2023, 43(1): 217-222. (in Chinese) | |
[44] | 李锦田, 罗黎, 林鑫, 等. 细粒棘球蚴感染小鼠血清的代谢组学分析[J]. 中国病原生物学杂志, 2023, 18(7): 770-776. |
Li JT, Luo L, Lin X, et al. Metabolomics analysis of serum in mice infected with Echinococcus granulosus[J]. J Pathog Biol, 2023, 18(7): 770-776. (in Chinese) |
[1] | 邓冰清, 阿迪莱·多力坤, 李寅时, 阿比旦·艾尼瓦尔, 孙胜, 肖雯颖, 葛聪蕙, 唐娜, 姜涛, 王慧, 张传山, 李静. 多房棘球蚴感染小鼠腹膜腔免疫细胞迁移及其功能变化[J]. 中国寄生虫学与寄生虫病杂志, 2025, 43(1): 76-83. |
[2] | 魏盼龙, 张耀刚, 张涛, 杨紫晗, 侯静, 田美媛, 黄登亮, 马艳艳. 多房棘球蚴感染巨噬细胞中CD47和SIRPα表达变化与抑制作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2025, 43(1): 84-90. |
[3] | 杨雪花, 宋海辰, 焦红杰, 程永凤, 岳迎宾, 宋传龙, 何白奇枫, 严媚. 细粒棘球蚴抗原B和钙结合蛋白1调节小鼠免疫性血小板减少症机制研究[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(5): 566-572. |
[4] | 李仕毓, 李静, 陆绍红, 郑斌. 宿主细胞自主免疫抗弓形虫的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(5): 653-658. |
[5] | 江楠, 苏雅馨, 蒋小凤, 沈玉娟, 曹建平. 基于单细胞转录组测序的细粒棘球蚴感染小鼠肝T细胞异质性分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 286-294. |
[6] | 祖力皮喀尔•图孙尼亚孜, 蒋铁民, 温浩. 腹腔多发合并胸壁细粒棘球蚴病1例[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 424-426. |
[7] | 李启松, 杨李, 腾飞翔, 马桂芳. 屋尘螨过敏原Der p 4的克隆、表达、免疫原性鉴定及生物信息学分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 42-47. |
[8] | 姜文静, 孟雅莉, 赵利娜, 王春苗, 张晓磊. 刚地弓形虫棒状体蛋白18和膜表面抗原30复合核酸疫苗对小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 532-538. |
[9] | 谭潇, 朱琪, 刘众齐, 李佳, 彭丁晋. 日本血吸虫Sj26gst mRNA候选疫苗的免疫原性研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 546-551. |
[10] | 张旭, 孙希萌. 旋毛虫感染免疫逃逸机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 492-496. |
[11] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[12] | 李文杰, 冯萌, 程训佳. 蠕虫及其来源分子对螨性哮喘免疫调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 131-136. |
[13] | 郭刚, 任远, 焦红杰, 武娟, 郭宝平, 齐文静, 李军, 张文宝. 腹腔感染棘球蚴微囊对小鼠肝脏多房棘球蚴感染及致病的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 156-162. |
[14] | 郝会囡, 程永康, 张茹, 韩璐璐, 宋艳艳, 龙绍蓉, 刘若丹, 张玺, 王中全, 崔晶. 旋毛虫新生幼虫可溶性抗原的免疫蛋白组学分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 176-182. |
[15] | 马慧, 种世桂, 陈根, 张伶慧, 秦俊梅, 赵玉敏. 多房棘球蚴病相关细胞信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 223-227. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||