中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (2): 131-136.doi: 10.12140/j.issn.1000-7423.2023.02.001
收稿日期:
2023-01-14
修回日期:
2023-02-15
出版日期:
2023-04-21
发布日期:
2023-04-21
通讯作者:
程训佳
作者简介:
李文杰(1998-),男,博士研究生,从事病原生物学研究。E-mail:22111010068@m.fudan.edu.cn
基金资助:
LI Wenjie(), FENG Meng, CHENG Xunjia*(
)
Received:
2023-01-14
Revised:
2023-02-15
Online:
2023-04-21
Published:
2023-04-21
Contact:
CHENG Xunjia
Supported by:
摘要:
随着人们生活卫生水平的提高,我国寄生蠕虫的感染率显著下降,逐渐进入后寄生虫时代。但是与此同时,螨性哮喘的发病率逐年上升,造成了重大的社会经济负担。越来越多的证据表明,蠕虫感染与过敏性疾病之间存在一定的联系。本文对蠕虫及其来源分子对螨性哮喘免疫调控的研究进行综述,包括对抗原递呈细胞、B细胞、T细胞的免疫应答和细胞因子释放的直接调节作用以及蠕虫通过肠道微生物菌群的间接调节作用,为螨性哮喘的治疗提供新的思路与方向。
中图分类号:
李文杰, 冯萌, 程训佳. 蠕虫及其来源分子对螨性哮喘免疫调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 131-136.
LI Wenjie, FENG Meng, CHENG Xunjia. Research advances of the immune regulation of helminths and their derived molecules on mite-induced asthma[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(2): 131-136.
[1] | Zhu HH, Huang JL, Chen YD, et al. Analysis on endemic status of soil-transmitted nematode infection in China in 2019[J]. Chin J Parasitol Parasit Dis, 2021, 39(5): 666-673. (in Chinese) |
(朱慧慧, 黄继磊, 陈颖丹, 等. 2019年全国土源性线虫感染状况分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 666-673.) | |
[2] |
Zhu HH, Huang JL, Chen YD, et al. National surveillance of hookworm disease in China: a population study[J]. PLoS Negl Trop Dis, 2022, 16(6): e0010405.
doi: 10.1371/journal.pntd.0010405 |
[3] | Chen YD, Huang JL, Zhu HH, et al. China’s control process of soil-transmitted helminth infections from pandemic to low-endemic levels[J]. Chin J Parasitol Parasit Dis, 2019, 37(4): 395-398. (in Chinese) |
(陈颖丹, 黄继磊, 朱慧慧, 等. 我国土源性线虫从高感染到低感染水平的防治历程[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(4): 395-398.) | |
[4] |
Ogulur I, Pat Y, Ardicli O, et al. Advances and highlights in biomarkers of allergic diseases[J]. Allergy, 2021, 76(12): 3659-3686.
doi: 10.1111/all.15089 pmid: 34519063 |
[5] |
Sánchez-Borges M, Fernandez-Caldas E, Thomas WR, et al. International consensus (ICON) on: clinical consequences of mite hypersensitivity, a global problem[J]. World Allergy Organ J, 2017, 10(1): 14.
doi: 10.1186/s40413-017-0145-4 |
[6] | Li L, Qian J, Zhou Y, et al. Domestic mite-induced allergy: causes, diagnosis, and future prospects[J]. Int J Immunopathol Pharmacol, 2018, 32: 2058738418804095. |
[7] |
Strachan DP. Hay fever, hygiene, and household size[J]. BMJ, 1989, 299(6710): 1259-1260.
doi: 10.1136/bmj.299.6710.1259 pmid: 2513902 |
[8] |
van den Biggelaar AHJ, Rodrigues LC, van Ree R, et al. Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese school children[J]. J Infect Dis, 2004, 189(5): 892-900.
pmid: 14976607 |
[9] |
Kok A, Robinson MJ. IgE, parasites, and allergy[J]. Lancet, 1976, 2(7986): 633.
pmid: 61371 |
[10] |
Turner KJ, Quinn EH, Anderson HR. Regulation of asthma by intestinal parasites. Investigation of possible mechanisms[J]. Immunology, 1978, 35(2): 281-288.
pmid: 571404 |
[11] | Costa M, da Costa V, Frigerio S, et al. Heme-oxygenase-1 attenuates oxidative functions of antigen presenting cells and promotes regulatory T cell differentiation during Fasciola hepatica infection[J]. Antioxidants (Basel), 2021, 10(12): 1938. |
[12] | Wu YJ, Zhang M, Yu QY, et al. The regulatory effect of heme oxygenase 1 on Th1/Th2 ratio and ILC2 in asthmatic mice[J]. Curr Immunol, 2021, 41(5): 368-373, 391. (in Chinese) |
(武玉姣, 张梦, 俞倩颖, 等. 血红素加氧酶1对哮喘小鼠Th1/Th2比值及ILC2的调节作用[J]. 现代免疫学, 2021, 41(5): 368-373, 391.) | |
[13] | Coronado S, Barrios L, Zakzuk J, et al. A recombinant cystatin from Ascaris lumbricoides attenuates inflammation of DSS-induced colitis[J]. Parasite Immunol, 2017, 39(4): 10.1111/pim.12425 |
[14] |
Coronado S, Zakzuk J, Regino R, et al. Ascaris lumbricoides cystatin prevents development of allergic airway inflammation in a mouse model[J]. Front Immunol, 2019, 10: 2280.
doi: 10.3389/fimmu.2019.02280 pmid: 31611876 |
[15] | Navarro S, Pickering DA, Ferreira IB, et al. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma[J]. Sci Transl Med, 2016, 8(362): 362ra143. |
[16] |
Martin RK, Damle SR, Valentine YA, et al. B1 cell IgE impedes mast cell-mediated enhancement of parasite expulsion through B2 IgE blockade[J]. Cell Rep, 2018, 22(7): 1824-1834.
doi: S2211-1247(18)30080-9 pmid: 29444434 |
[17] |
Trampert DC, Hubers LM, van de Graaf SFJ, et al. On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1401-1409.
doi: 10.1016/j.bbadis.2017.07.038 |
[18] |
Nkurunungi G, Nassuuna J, Mpairwe H, et al. Allergen skin test reactivity and asthma are inversely associated with ratios of IgG4/IgE and total IgE/allergen-specific IgE in Ugandan communities[J]. Clin Exp Allergy, 2021, 51(5): 703-715.
doi: 10.1111/cea.13834 pmid: 33512036 |
[19] |
Catalán D, Mansilla MA, Ferrier A, et al. Immunosuppressive mechanisms of regulatory B cells[J]. Front Immunol, 2021, 12: 611795.
doi: 10.3389/fimmu.2021.611795 |
[20] |
Xie J, Shi CW, Huang HB, et al. Induction of the IL-10-producing regulatory B cell phenotype following Trichinella spiralis infection[J]. Mol Immunol, 2021, 133: 86-94.
doi: 10.1016/j.molimm.2021.02.012 |
[21] |
Qi XW, Shan JY, Liu XL, et al. The role of regulatory B cells in Echinococcus granulosus-infected mice[J]. Parasitol Res, 2021, 120(4): 1389-1404.
doi: 10.1007/s00436-020-07025-3 |
[22] | Chayé MAM, Tontini C, Ozir-Fazalalikhan A, et al. Use of toll-like receptor (TLR) ligation to characterize human regulatory B cells subsets[J]. Methods Mol Biol, 2021, 2270: 235-261. |
[23] |
Gao X, Ren X, Wang Q, et al. Critical roles of regulatory B and T cells in helminth parasite-induced protection against allergic airway inflammation[J]. Clin Exp Immunol, 2019, 198(3): 390-402.
doi: 10.1111/cei.13362 pmid: 31397879 |
[24] |
Haeberlein S, Obieglo K, Ozir-Fazalalikhan A, et al. Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells[J]. PLoS Pathog, 2017, 13(7): e1006539.
doi: 10.1371/journal.ppat.1006539 |
[25] |
Okayama Y, Matsumoto H, Odajima H, et al. Roles of omalizumab in various allergic diseases[J]. Allergol Int, 2020, 69(2): 167-177.
doi: S1323-8930(20)30010-1 pmid: 32067933 |
[26] |
Xiong P, Liu TL, Huang H, et al. IL-27 overexpression alleviates inflammatory response in allergic asthma by inhibiting Th9 differentiation and regulating Th1/Th2 balance[J]. Immunopharmacol Immunotoxicol, 2022, 44(5): 712-718.
doi: 10.1080/08923973.2022.2077755 |
[27] |
Bellinghausen I, Khatri R, Saloga J. Current strategies to modulate regulatory T cell activity in allergic inflammation[J]. Front Immunol, 2022, 13: 912529.
doi: 10.3389/fimmu.2022.912529 |
[28] |
Zhang J, Zou Y, Chen LM, et al. Regulatory T cells, a viable target against airway allergic inflammatory responses in asthma[J]. Front Immunol, 2022, 13: 902318.
doi: 10.3389/fimmu.2022.902318 |
[29] |
Ren JL, Hu LZ, Yang J, et al. Novel T-cell epitopes on Schistosoma japonicum SjP40 protein and their preventive effect on allergic asthma in mice[J]. Eur J Immunol, 2016, 46(5): 1203-1213.
doi: 10.1002/eji.201545775 |
[30] |
Johnston CJC, Smyth DJ, Kodali RB, et al. A structurally distinct TGF-β mimic from an intestinal helminth parasite potently induces regulatory T cells[J]. Nat Commun, 2017, 8(1): 1741.
doi: 10.1038/s41467-017-01886-6 pmid: 29170498 |
[31] |
Chauché C, Rasid O, Donachie AM, et al. Suppression of airway allergic eosinophilia by Hp-TGM, a helminth mimic of TGF-Β[J]. Immunology, 2022, 167(2): 197-211.
doi: 10.1111/imm.13528 pmid: 35758054 |
[32] |
Li L, Shan WQ, Zhu HJ, et al. SJMHE1 peptide from Schistosoma japonicum inhibits asthma in mice by regulating Th17/treg cell balance via miR-155[J]. J Inflamm Res, 2021, 14: 5305-5318.
doi: 10.2147/JIR.S334636 pmid: 34703270 |
[33] |
Zhang WZ, Li L, Zheng Y, et al. Schistosoma japonicum peptide SJMHE1 suppresses airway inflammation of allergic asthma in mice[J]. J Cell Mol Med, 2019, 23(11): 7819-7829.
doi: 10.1111/jcmm.14661 pmid: 31496071 |
[34] | Gao HY, Wan C, Sun FD, et al. Effect of Echinococcus granulosus hydatid cyst fluid protein on allergic rhinitis induced by ovalbumin in mice[J]. Chin J Schisto Control, 2022, 34(2): 158-162. (in Chinese) |
(高宏宇, 万晨, 孙发缔, 等. 细粒棘球蚴囊液蛋白对卵清蛋白诱导的小鼠变应性鼻炎效果[J]. 中国血吸虫病防治杂志, 2022, 34(2): 158-162.) | |
[35] |
Kim HJ, Kang SA, Yong TS, et al. Therapeutic effects of Echinococcus granulosus cystic fluid on allergic airway inflammation[J]. Exp Parasitol, 2019, 198: 63-70.
doi: 10.1016/j.exppara.2019.02.003 |
[36] | Wang SY, Yang XD, Gao HY, et al. Analysis of components of proteins from Echinococcus granulosus cyst fluid[J]. Chin J Schisto Control, 2021, 33(5): 476-482, 539. (in Chinese) |
(王舒颖, 杨小迪, 高宏宇, 等. 细粒棘球蚴囊液蛋白组分分析[J]. 中国血吸虫病防治杂志, 2021, 33(5): 476-482, 539.) | |
[37] |
Osbourn M, Soares DC, Vacca F, et al. HpARI protein secreted by a helminth parasite suppresses interleukin-33[J]. Immunity, 2017, 47(4): 739-751.e5.
doi: S1074-7613(17)30426-0 pmid: 29045903 |
[38] |
Alves CLS, Santiago LF, Santana MBR, et al. Immunomodulatory properties of Schistosoma mansoni proteins Sm200 and SmKI-1 in vitro and in a murine model of allergy to the mite Blomia tropicalis[J]. Mol Immunol, 2020, 124: 91-99.
doi: 10.1016/j.molimm.2020.05.011 |
[39] |
Bønnelykke K, Matheson MC, Pers TH, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization[J]. Nat Genet, 2013, 45(8): 902-906.
doi: 10.1038/ng.2694 pmid: 23817571 |
[40] |
Bønnelykke K, Sleiman P, Nielsen K, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations[J]. Nat Genet, 2014, 46(1): 51-55.
doi: 10.1038/ng.2830 pmid: 24241537 |
[41] |
Stanbery AG, Smita S, von Moltke J, et al. TSLP, IL-33, and IL-25: not just for allergy and helminth infection[J]. J Allergy Clin Immunol, 2022, 150(6): 1302-1313.
doi: 10.1016/j.jaci.2022.07.003 |
[42] |
Vacca F, Chauché C, Jamwal A, et al. A helminth-derived suppressor of ST2 blocks allergic responses[J]. eLife, 2020, 9: e54017.
doi: 10.7554/eLife.54017 |
[43] | Shinoda K, Choe A, Hirahara K, et al. Nematode ascarosides attenuate mammalian type 2 inflammatory responses[J]. Proc Natl Acad Sci USA, 2022, 119(9): e2108686119. |
[44] |
Boonpiyathad T, Satitsuksanoa P, Akdis M, et al. IL-10 producing T and B cells in allergy[J]. Semin Immunol, 2019, 44: 101326.
doi: 10.1016/j.smim.2019.101326 |
[45] | Prodjinotho UF, Gres V, Henkel F, et al. Helminthic dehydrogenase drives PGE2 and IL-10 production in monocytes to potentiate Treg induction[J]. EMBO Rep, 2022, 23(5): e54096. |
[46] |
Tanaka A, Allam VSRR, Simpson J, et al. The parasitic 68-mer peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma[J]. J Allergy Clin Immunol, 2018, 141(6): 2316-2319.
doi: S0091-6749(18)30330-0 pmid: 29522851 |
[47] |
Jin Y, Wi HJ, Choi MH, et al. Regulation of anti-inflammatory cytokines IL-10 and TGF-β in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen[J]. Exp Mol Med, 2014, 46(1): e74.
doi: 10.1038/emm.2013.144 |
[48] |
Zubeldia-Varela E, Barker-Tejeda TC, Obeso D, et al. Microbiome and allergy: new insights and perspectives[J]. J Investig Allergol Clin Immunol, 2022, 32(5): 327-344.
doi: 10.18176/jiaci |
[49] | Hou KJ, Wu ZX, Chen XY, et al. Microbiota in health and diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 135. |
[50] |
Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity[J]. Mucosal Immunol, 2018, 11(4): 1039-1046.
doi: 10.1038/s41385-018-0008-5 pmid: 29453411 |
[51] |
Zaiss MM, Rapin A, Lebon L, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation[J]. Immunity, 2015, 43(5): 998-1010.
doi: 10.1016/j.immuni.2015.09.012 pmid: 26522986 |
[52] |
Kim JY, Kim EM, Yi MH, et al. Chinese liver fluke Clonorchis sinensis infection changes the gut microbiome and increases probiotic Lactobacillus in mice[J]. Parasitol Res, 2019, 118(2): 693-699.
doi: 10.1007/s00436-018-6179-x |
[53] |
Kim JY, Kim EM, Yi MH, et al. Intestinal fluke Metagonimus yokogawai infection increases probiotic Lactobacillus in mouse cecum[J]. Exp Parasitol, 2018, 193: 45-50.
doi: 10.1016/j.exppara.2018.08.002 |
[54] |
Verschoor D, von Gunten S. Allergy and atopic diseases: an update on experimental evidence[J]. Int Arch Allergy Immunol, 2019, 180(4): 235-243.
doi: 10.1159/000504439 |
[55] |
Bohnacker S, Troisi F, de Los Reyes Jiménez M, et al. What can parasites tell us about the pathogenesis and treatment of asthma and allergic diseases[J]. Front Immunol, 2020, 11: 2106.
doi: 10.3389/fimmu.2020.02106 pmid: 33013887 |
[56] | Finlay CM, Stefanska AM, Coleman MM, et al. Secreted products of Fasciola hepatica inhibit the induction of T cell responses that mediate allergy[J]. Parasite Immunol, 2017, 39(10): 10.1111/pim.12460. |
[57] |
Pascoal VF, da Cunha AA, Morassutti AL, et al. Immunomodulatory effect of different extracts from Angiostrongylus cantonensis on airway inflammation in an allergic asthma model[J]. Parasitol Res, 2020, 119(11): 3719-3728.
doi: 10.1007/s00436-020-06884-0 |
[1] | 黎嫦, 杜新月, 严敏, 王兆军. 中性粒细胞胞外诱捕网在寄生虫感染中的作用和机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 219-222. |
[2] | 马慧, 种世桂, 陈根, 张伶慧, 秦俊梅, 赵玉敏. 多房棘球蚴病相关细胞信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 223-227. |
[3] | 栗根, 孙同骏, 钱亚云, 李倩倩, 杨小迪. 血吸虫及其衍生物调节免疫失调性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 85-91. |
[4] | 陈果, 朱丹丹, 段义农. 免疫调节蛋白B7家族在日本血吸虫感染免疫调节中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 774-779. |
[5] | 潘筱雯, 吴银娟, 何晴, 殷颖璇, 李学荣. 寄生蠕虫外泌体及其功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 390-395. |
[6] | 何威, 周必英. 感染蠕虫后宿主T细胞免疫应答相关信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 223-227. |
[7] | 胡玥, 吕志跃. 代谢组学在医学蠕虫研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 703-709. |
[8] | 陈玉莹, 王晓婷, 戴洋, 曹俊. 蠕虫及其来源分子干预炎症性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 380-385. |
[9] | 刘冰, 王奇, 贺拥军, 贺平. 医学原虫相关蛋白的免疫调节作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 112-119. |
[10] | 李朋举, 左素琼, 段玉娟, 李浩然, 张振超, 李祥瑞, 王帅. 弓形虫外泌体研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 653-657. |
[11] | 武艺, 李路, 徐永伟, 邢瑞欣, 胡静, 王书书, 沈继龙, 徐元宏, 陈熙. 日本血吸虫成虫可溶性蛋白和重组半胱氨酸蛋白酶抑制蛋白抑制小鼠结肠炎的研究[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(2): 127-136. |
[12] | 张小凡, 巩文词, 沈玉娟. 胞外囊泡在寄生蠕虫中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 648-654. |
[13] | 臧新中, 李焕璋, 钱门宝, 朱慧慧, 周长海, 陈颖丹, 秦志强, 李石柱. 重点蠕虫病伤残权重研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5): 510-515. |
[14] | 张雅兰, 朱岩昆, 陈伟奇, 邓艳, 蔺西萌, 李蓬, 张红卫, 许汴利. 2015年河南省城镇地区人体肠道蠕虫感染现状调查[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(2): 135-139. |
[15] | 魏绮珮, 齐永芬, 鱼艳荣. 内质网应激在寄生虫感染中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(6): 617-622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||