中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (1): 112-119.doi: 10.12140/j.issn.1000-7423.2021.01.017
收稿日期:
2020-08-03
修回日期:
2020-11-28
出版日期:
2021-02-28
发布日期:
2021-03-10
通讯作者:
贺平
作者简介:
刘冰(1995-),女,硕士研究生,研究方向为免疫学。E-mail: 基金资助:
LIU Bing(), WANG Qi, HE Yong-jun, HE Ping*(
)
Received:
2020-08-03
Revised:
2020-11-28
Online:
2021-02-28
Published:
2021-03-10
Contact:
HE Ping
Supported by:
摘要:
原虫是一类结构简单的单细胞真核生物,种类繁多,广泛分布于自然界。医学原虫可以寄生于人体的体液、组织或细胞等,通过多种有效机制调节宿主的免疫应答,逃避宿主免疫系统的攻击,使虫体在宿主体内生存繁殖并引起疾病。本文就疟原虫、刚地弓形虫、杜氏利什曼原虫和蓝氏贾第鞭毛虫相关蛋白的免疫调节作用进行综述,以期为防治医学原虫相关的寄生虫病提供资料。
中图分类号:
刘冰, 王奇, 贺拥军, 贺平. 医学原虫相关蛋白的免疫调节作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 112-119.
LIU Bing, WANG Qi, HE Yong-jun, HE Ping. Research progress on immune regulation of medical protozoa-related proteins[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(1): 112-119.
[1] | Shen J. Lecture 8 Immune evasion of parasite[J]. Chin J Vet Parasitol, 2004,12(4):57-58. (in Chinese) |
( 沈杰. 第八讲寄生虫的免疫逃避[J]. 中国兽医寄生虫病, 2004,12(4):57-58.) | |
[2] | Tong QB, Liu SX, Cao JP. Advances in research of molecules related to the immune evasion of schistosomes[J]. Chin J Parasitol Parasit Dis, 2004,22(1):57-60. (in Chinese) |
( 童群波, 刘述先, 曹建平. 血吸虫免疫逃避相关分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2004,22(1):57-60.) | |
[3] |
Ahmed AK, Mun HS, Aosai FM, et al. Roles of Toxoplasma gondii-derived heat shock protein 70 in host defense against T. gondii infection[J]. Microbiol Immunol, 2004,48(11):911-915.
doi: 10.1111/j.1348-0421.2004.tb03611.x pmid: 15557751 |
[4] | Feng XM, Wang YH, Ju XH. Research progress on the mechanisms of antigenic variation in Giardia lamblia[J]. Chin J Parasitol Parasit Dis, 2012,30(4):317-320. (in Chinese) |
( 冯宪敏, 王月华, 鞠晓红. 蓝氏贾第鞭毛虫表面抗原变异机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012,30(4):317-320.) | |
[5] | Huang HB, Yang WT, Wang CF, et al. Progresses on antitumor immune mechanisms of protozoon[J]. Chin J Parasitol Parasit Dis, 2015,33(1):64-67. (in Chinese) |
( 黄海斌, 杨文涛, 王春凤, 等. 原虫抗肿瘤免疫机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(1):64-67.) | |
[6] | Chen QJ, Yin JG. Research and perspectives in parasitology[J]. Chin J Parasitol Parasit Dis, 2007,25(4):342-348. (in Chinese) |
( 陈启军, 尹继刚. 寄生虫学主要研究进展及发展方向[J]. 中国寄生虫学与寄生虫病杂志, 2007,25(4):342-348.) | |
[7] | Liu SX, Cao JP. Research progress and prospects for vaccines against parasitic diseases[J]. Chin J Parasitol Parasit Dis, 2005,23(z1):362-368, 373. (in Chinese) |
( 刘述先, 曹建平. 寄生虫病疫苗研究的现状及展望[J]. 中国寄生虫学与寄生虫病杂志, 2005,23(z1):362-368, 373. | |
[8] |
Semblat JP, Ghumra A, Czajkowsky DM, et al. Identification of the minimal binding region of a Plasmodium falciparum IgM binding PfEMP1 domain[J]. Mol Biochem Parasitol, 2015,201(1):76-82.
doi: 10.1016/j.molbiopara.2015.06.001 pmid: 26094597 |
[9] |
Kraemer SM, Smith JD. A family affair: var genes, PfEMP1 binding, and malaria disease[J]. Curr Opin Microbiol, 2006,9(4):374-380.
doi: 10.1016/j.mib.2006.06.006 |
[10] |
Smith JD, Chitnis CE, Craig AG, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes[J]. Cell, 1995,82(1):101-110.
doi: 10.1016/0092-8674(95)90056-x pmid: 7606775 |
[11] |
Hviid L, Jensen AT. PfEMP1-A parasite protein family of key importance in Plasmodium falciparum malaria immunity and pathogenesis[J]. Adv Parasitol, 2015,88:51-84.
doi: 10.1016/bs.apar.2015.02.004 pmid: 25911365 |
[12] |
Higgins MK, Carrington M. Sequence variation and structural conservation allows development of novel function and immune evasion in parasite surface protein families[J]. Protein Sci, 2014,23(4):354-365.
doi: 10.1002/pro.2428 |
[13] |
Chan JA, Drew DR, Reiling L, et al. Low levels of human antibodies to gametocyte-infected erythrocytes contrasts the PfEMP1-dominant response to asexual stages in P. falciparum malaria[J]. Front Immunol, 2018,9:3126.
doi: 10.3389/fimmu.2018.03126 pmid: 30692996 |
[14] |
Dolan SA, Miller LH, Wellems TE. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum[J]. J Clin Invest, 1990,86(2):618-624.
doi: 10.1172/JCI114753 pmid: 2200806 |
[15] |
Persson KE, McCallum FJ, Reiling L, et al. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies[J]. J Clin Invest, 2008,118(1):342-351.
doi: 10.1172/JCI32138 pmid: 18064303 |
[16] |
Stubbs J, Simpson KM, Triglia T, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes[J]. Science, 2005,309(5739):1384-1387.
doi: 10.1126/science.1115257 pmid: 16123303 |
[17] |
Tham WH, Wilson DW, Reiling L, et al. Antibodies to reticulocyte binding protein-like homologue 4 inhibit invasion of Plasmodium falciparum into human erythrocytes[J]. Infect Immun, 2009,77(6):2427-2435.
doi: 10.1128/IAI.00048-09 pmid: 19307208 |
[18] |
Duraisingh MT, Triglia T, Ralph SA, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes[J]. Embo J, 2003,22(5):1047-1057.
doi: 10.1093/emboj/cdg096 pmid: 12606570 |
[19] |
Ikarashi M, Nakashima H, Kinoshita M, et al. Distinct development and functions of resident and recruited liver Kupffer cells/macrophages[J]. J Leukoc Biol, 2013,94(6):1325-1336.
doi: 10.1189/jlb.0313144 pmid: 23964119 |
[20] |
Casares S, Richie TL. Immune evasion by malaria parasites: a challenge for vaccine development[J]. Curr Opin Immunol, 2009,21(3):321-330.
doi: 10.1016/j.coi.2009.05.015 |
[21] |
Gomes PS, Bhardwaj J, Rivera-Correa J, et al. Immune escape strategies of malaria parasites[J]. Front Microbiol, 2016,7:1617.
doi: 10.3389/fmicb.2016.01617 pmid: 27799922 |
[22] |
Rénia L, Goh YS. Malaria parasites: the great escape[J]. Front Immunol, 2016,7:463.
doi: 10.3389/fimmu.2016.00463 pmid: 27872623 |
[23] |
Holder AA. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria[J]. Parasitology, 2009,136(12):1445-1456.
doi: 10.1017/S0031182009990515 pmid: 19627632 |
[24] |
Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum[J]. Nature, 2002,419(6906):498-511.
doi: 10.1038/nature01097 pmid: 12368864 |
[25] |
Saito F, Hirayasu K, Satoh T, et al. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors[J]. Nature, 2017,552(7683):101-105.
doi: 10.1038/nature24994 pmid: 29186116 |
[26] |
Petter M, Haeggström M, Khattab A, et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns[J]. Mol Biochem Parasitol, 2007,156(1):51-61.
doi: 10.1016/j.molbiopara.2007.07.011 pmid: 17719658 |
[27] |
Goel S, Palmkvist M, Moll K, et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria[J]. Nat Med, 2015,21(4):314-317.
doi: 10.1038/nm.3812 pmid: 25751816 |
[28] |
Deans AM, Rowe JA. Plasmodium falciparum: rosettes do not protect merozoites from invasion-inhibitory antibodies[J]. Exp Parasitol, 2006,112(4):269-273.
doi: 10.1016/j.exppara.2005.11.007 pmid: 16364300 |
[29] |
Yam XY, Niang M, Madnani KG, et al. Three is a crowd - new insights into rosetting in Plasmodium falciparum[J]. Trends Parasitol, 2017,33(4):309-320.
doi: 10.1016/j.pt.2016.12.012 pmid: 28109696 |
[30] |
Gomes PS, Bhardwaj J, Rivera-Correa J, et al. Immune escape strategies of malaria parasites[J]. Front Microbiol, 2016,7:1617.
doi: 10.3389/fmicb.2016.01617 pmid: 27799922 |
[31] |
Singh H, Madnani K, Lim YB, et al. Expression dynamics and physiologically relevant functional study of STEVOR in asexual stages of Plasmodium falciparum infection[J]. Cell Microbiol, 2017,19(6):e12715.
doi: 10.1111/cmi.v19.6 |
[32] | Yin LT, Cao L, Meng XL, et al. Bioinformatics analysis of the structure and function of the gene encoding heat shock protein 70 from Toxoplasma gondii[J]. J Pathog Biol, 2011,6(7):513-516. (in Chinese) |
( 殷丽天, 曹蕾, 孟晓丽, 等. 刚地弓形虫热休克70基因编码蛋白结构与功能的生物信息学分析[J]. 中国病原生物学杂志, 2011,6(7):513-516.) | |
[33] |
Czarnewski P, Araújo ECB, Oliveira MC, et al. Recombinant TgHSP70 immunization protects against Toxoplasma gondii brain cyst formation by enhancing inducible nitric oxide expression[J]. Front Cell Infect Microbiol, 2017,7:142.
doi: 10.3389/fcimb.2017.00142 pmid: 28487847 |
[34] |
Makino M, Uemura N, Moroda M, et al. Innate immunity in DNA vaccine with Toxoplasma gondii-heat shock protein 70 gene that induces DC activation and Th1 polarization[J]. Vaccine, 2011,29(10):1899-1905.
doi: 10.1016/j.vaccine.2010.12.118 |
[35] |
Dautu G, Munyaka B, Carmen G, et al. Toxoplasma gondii: DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential[J]. Exp Parasitol, 2007,116(3):273-282.
doi: 10.1016/j.exppara.2007.01.017 pmid: 17379212 |
[36] |
Mun HS, Aosai FM, Yano A. Role of Toxoplasma gondii HSP70 and Toxoplasma gondii HSP30/bag1 in antibody formation and prophylactic immunity in mice experimentally infected with Toxoplasma gondii[J]. Microbiol Immunol, 1999,43(5):471-479.
doi: 10.1111/j.1348-0421.1999.tb02430.x pmid: 10449253 |
[37] |
Gedik Y, Gülçe Īz S, Can H, et al. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model[J]. Trials Vaccinol, 2016,5:15-23.
doi: 10.1016/j.trivac.2015.11.002 |
[38] |
Soldati D, Dubremetz JF, Lebrun M. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii[J]. Int J Parasitol, 2001,31(12):1293-1302.
doi: 10.1016/s0020-7519(01)00257-0 pmid: 11566297 |
[39] |
Ismael AB, Sekkai D, Collin C, et al. The MIC3 gene of Toxoplasma gondii is a novel potent vaccine candidate against toxoplasmosis[J]. Infect Immun, 2003,71(11):6222-6228.
doi: 10.1128/iai.71.11.6222-6228.2003 pmid: 14573640 |
[40] |
Zhang D, Jiang N, Chen Q. Vaccination with recombinant adenoviruses expressing Toxoplasma gondii MIC3, ROP9, and SAG2 provide protective immunity against acute toxoplasmosis in mice[J]. Vaccine, 2019,37(8):1118-1125.
doi: 10.1016/j.vaccine.2018.12.044 pmid: 30670302 |
[41] |
Ismael AB, Dimier-Poisson I, Lebrun M, et al. Mic1-3 knockout of Toxoplasma gondii is a successful vaccine against chronic and congenital toxoplasmosis in mice[J]. J Infect Dis, 2006,194(8):1176-1183.
doi: 10.1086/507706 pmid: 16991094 |
[42] |
Yang DY, Liu J, Hao P, et al. MIC3, a novel cross-protective antigen expressed in Toxoplasma gondii and Neospora caninum[J]. Parasitol Res, 2015,114(10):3791-3799.
doi: 10.1007/s00436-015-4609-6 pmid: 26141436 |
[43] |
Gong P, Cao L, Guo Y, et al. Toxoplasma gondii: protective immunity induced by a DNA vaccine expressing GRA1 and MIC3 against toxoplasmosis in BALB/c mice[J]. Exp Parasitol, 2016,166:131-136.
doi: 10.1016/j.exppara.2016.04.003 pmid: 27059254 |
[44] |
Denkers EY, Bzik DJ, Fox BA, et al. An inside job: hacking into Janus kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan Toxoplasma gondii[J]. Infect Immun, 2012,80(2):476-482.
doi: 10.1128/IAI.05974-11 |
[45] |
Ong YC, Reese ML, Boothroyd JC. Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6[J]. J Biol Chem, 2010,285(37):28731-28740.
doi: 10.1074/jbc.M110.112359 pmid: 20624917 |
[46] |
Butcher BA, Fox BA, Rommereim LM, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control[J]. PLoS Pathog, 2011,7(9):e1002236.
doi: 10.1371/journal.ppat.1002236 pmid: 21931552 |
[47] |
Jensen KDC, Hu K, Whitmarsh RJ, et al. Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15[J]. Infect Immun, 2013,81(6):2156-2167.
doi: 10.1128/IAI.01185-12 |
[48] |
Dunay IR, DaMatta RA, Fux B, et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii[J]. Immunity, 2008,29(2):306-317.
doi: 10.1016/j.immuni.2008.05.019 |
[49] |
Baird JR, Fox BA, Sanders KL, et al. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment[J]. Cancer Res, 2013,73(13):3842-3851.
doi: 10.1158/0008-5472.CAN-12-1974 pmid: 23704211 |
[50] |
Fox BA, Sanders KL, Rommereim LM, et al. Secretion of rhoptry and dense granule effector proteins by nonreplicating Toxoplasma gondii uracil auxotrophs controls the development of antitumor immunity[J]. PLoS Genet, 2016,12(7):e1006189.
doi: 10.1371/journal.pgen.1006189 pmid: 27447180 |
[51] |
Du J, An R, Chen L, et al. Toxoplasma gondii virulence factor ROP18 inhibits the host NF-κB pathway by promoting p65 degradation[J]. J Biol Chem, 2014,289(18):12578-12592.
doi: 10.1074/jbc.M113.544718 pmid: 24648522 |
[52] |
Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence[J]. Cell Host Microbe, 2010,8(6):484-495.
doi: 10.1016/j.chom.2010.11.005 |
[53] |
Yamamoto M, Ma JS, Mueller C, et al. ATF6beta is a host cellular target of the Toxoplasma gondii virulence factor ROP18[J]. J Exp Med, 2011,208(7):1533-1546.
doi: 10.1084/jem.20101660 |
[54] |
Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors[J]. Nat Rev Microbiol, 2012,10(11):766-778.
doi: 10.1038/nrmicro2858 |
[55] |
McLeod R, Estes RG, Mack DG, et al. Immune response of mice to ingested Toxoplasma gondii: a model of Toxoplasma infection acquired by ingestion[J]. J Infect Dis, 1984,149(2):234-244.
doi: 10.1093/infdis/149.2.234 pmid: 6699433 |
[56] |
Luft B-J, Remington J-S. Toxoplasmic encephalitis in AIDS[J]. Clin Infect Dis, 1992,15(2):211-222.
doi: 10.1093/clinids/15.2.211 pmid: 1520757 |
[57] |
Radke JR, Guerini MN, Jerome M, et al. A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii[J]. Mol Biochem Parasitol, 2003,131(2):119-127.
doi: 10.1016/s0166-6851(03)00198-1 pmid: 14511810 |
[58] |
Jung C, Lee CY, Grigg ME. The SRS superfamily of Toxoplasma surface proteins[J]. Int J Parasitol, 2004,34(3):285-296.
doi: 10.1016/j.ijpara.2003.12.004 |
[59] | Jing BQ, Xie YE, HU WM, et al. Immunogenecity of recombinant Leishmania donovani peroxidoxin-1, tryparedoxin peroxidase, hypothetical protein CAJ07026.1 and GDP-mannose pyrophosphorylase in BALB/c mice[J]. Chin J Parasitol Parasit Dis, 2017,35(6):563-569. (in Chinese) |
( 敬保迁, 谢勇恩, 胡为民, 等. 重组杜氏利什曼原虫Pxn1、TryP、假定蛋白CAJ07026和GDPMP蛋白刺激BALB/c小鼠的免疫应答状态[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(6):563-569.) | |
[60] |
Bhattacharya P, Ghosh S, Ejazi SA, et al. Induction of IL-10 and TGFβ from CD4+CD25+FoxP3+T cells correlates with parasite load in Indian kala-azar patients infected with Leishmania donovani [J]. PLoS Negl Trop Dis, 2016,10(2):e0004422.
doi: 10.1371/journal.pntd.0004422 pmid: 26829554 |
[61] |
Bayih AG, Daifalla NS, Gedamu L. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant [J]. PLoS Negl Trop Dis, 2014,8(12):e3391.
doi: 10.1371/journal.pntd.0003391 pmid: 25500571 |
[62] |
Barr SD, Gedamu L. Role of peroxidoxins in Leishmania chagasi survival. Evidence of an enzymatic defense against nitrosative stress[J]. J Biol Chem, 2003,278(12):10816-10823.
doi: 10.1074/jbc.M212990200 pmid: 12529367 |
[63] |
Stober CB, Lange UG, Roberts MTM, et al. From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine Leishmania major infection[J]. Vaccine, 2006,24(14):2602-2616.
doi: 10.1016/j.vaccine.2005.12.012 pmid: 16406227 |
[64] | Li JF. Preliminary studies of DNA vaccine with amastin gene against Leishmania donovani[D]. Chengdu: Sichuan University, 2007. ( in Chinese) |
( 李金福. 杜氏利什曼原虫amastin基因DNA疫苗的初步研究[D]. 成都: 四川大学, 2007.) | |
[65] |
Carranza PG, Lujan HD. New insights regarding the biology of Giardia lamblia[J]. Microbes Infect, 2010,12(1):71-80.
doi: 10.1016/j.micinf.2009.09.008 |
[66] | Chen XX, Fu TX, Zhao CL, et al. Experimental study on the protective antigen of G. intestinalis[J]. Chin Trop Med, 2007,7(12):2177-2179. (in Chinese) |
( 陈锡欣, 傅婷霞, 赵长磊, 等. 蓝氏贾第鞭毛虫保护性抗原的实验研究[J]. 中国热带医学, 2007,7(12):2177-2179.) | |
[67] |
Rudenko G. African trypanosomes: the genome and adaptations for immune evasion[J]. Essays Biochem, 2011,51:47-62.
doi: 10.1042/BSE0510047 |
[68] |
Nash TE, Banks SM, Alling DW, et al. Frequency of variant antigens in Giardia lamblia[J]. Exp Parasitol, 1990,71(4):415-421.
doi: 10.1016/0014-4894(90)90067-m pmid: 1699782 |
[69] | Wang Y, Tian XF. Immune evasion mechanisms of Giardia lamblia[J]. Chin J Zoonoses, 2013,29(9):909-913. (in Chinese) |
( 王洋, 田喜凤. 蓝氏贾第鞭毛虫的免疫逃避机制[J]. 中国人兽共患病学报, 2013,29(9):909-913.)
doi: 10.3969/cjz.j.issn.1002-2694.2013.09.017 |
[1] | 姜文静, 孟雅莉, 赵利娜, 王春苗, 张晓磊. 刚地弓形虫棒状体蛋白18和膜表面抗原30复合核酸疫苗对小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 532-538. |
[2] | 郭帅, 何彪, 高源利, 范永铃, 朱锋, 丁艳, 刘太平, 徐文岳. 鼠疟原虫感染大鼠和小鼠的种特异性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 539-545. |
[3] | 周瑞敏, 纪鹏慧, 李素华, 杨成运, 刘颖, 钱丹, 邓艳, 鲁德领, 赵玉玲, 赵东阳, 张红卫. 河南省自赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 593-600. |
[4] | 梁柯嘉, 刘聪, 李彦霖, 李小鸽, 刘彦, 李贞魁. 疟原虫有性阶段转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 619-624. |
[5] | 刘岳青, 马林源, 陈开廷, 高金亮, 王鹏. 蜱源Kunitz型丝氨酸蛋白酶抑制分子的结构与功能研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 625-630. |
[6] | 原慧真, 李栋梁, 程书琪, 菅复春. 芽囊原虫体外培养特性的研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 631-635. |
[7] | 丁红芸, 董莹, 徐艳春, 邓艳, 刘言, 吴静, 陈梦妮, 张苍林. 云南省输入性间日疟原虫多药抗性蛋白1基因突变多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 404-411. |
[8] | 曹得萍, 李嘉静, 宋梦微, 莫刚. 多房棘球蚴组织蛋白体外刺激肝星状细胞变化的实验观察[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 440-445. |
[9] | 芦星, 王水怡, 陈林军, 刘明明, 刘雨桐, 朱慧茹, 姜冰冰, 杜少磊, 巴音查汗, 刘丹丹, 张伟. 马泰勒虫棒状体颈部蛋白5基因的克隆与原核表达[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 497-501. |
[10] | 叶井明, 何威, 刘慧媛, 鱼潇, 罗波, 刘美辰, 周必英. 猪囊尾蚴排泄分泌抗原TPx对仔猪树突状细胞活化的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 286-293. |
[11] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[12] | 李文杰, 冯萌, 程训佳. 蠕虫及其来源分子对螨性哮喘免疫调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 131-136. |
[13] | 郝会囡, 程永康, 张茹, 韩璐璐, 宋艳艳, 龙绍蓉, 刘若丹, 张玺, 王中全, 崔晶. 旋毛虫新生幼虫可溶性抗原的免疫蛋白组学分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 176-182. |
[14] | 孙军. 疟原虫色素形成的生物学意义[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 209-212. |
[15] | 黎嫦, 杜新月, 严敏, 王兆军. 中性粒细胞胞外诱捕网在寄生虫感染中的作用和机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 219-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||