[1] | Yuan XD, Wang CR, Zhu XQ. Hazardousness and control measures of fascioliasis[J]. Chin J Vet Parasitol, 2019,27(2):110-113. (in Chinese) | [1] | ( 袁晓丹, 王春仁, 朱兴全. 片形吸虫病的危害与防制[J]. 中国动物传染病学报, 2019,27(2):110-113.) | [2] | Novobilsky A, H?glund J. First report of closantel treatment failure against Fasciola hepatica in cattle[J]. Int J Parasitol Drugs Drug Resist, 2015,5(3):172-177. | [3] | Graham-Brown J, Hartley C, Clough H, et al. Dairy heifers naturally exposed to Fasciola hepatica develop a type 2 immune response and concomitant suppression of leukocyte proliferation[J]. Infect Immun, 2018,86(1):607-624. | [4] | Rodríguez E, Noya V, Cervi L, et al. Glycans from Fasciola hepatica modulate the host immune response and TLR-induced maturation of dendritic cells[J]. PLoS Negl Trop Dis, 2015,9(12):e0004234. | [5] | Mas-Coma S. Epidemiology of fascioliasis in human endemic areas[J]. J Helminthol, 2005,79(3):207-216. | [6] | Li L. The harm of Fasciola hepatica to livestock and its control[J]. Vet Orientat, 2019(8):140. (in Chinese) | [6] | ( 李丽. 肝片形吸虫对家畜的危害及防制[J]. 兽医导刊, 2019(8):140.) | [7] | Kaya M, Beta R, Cetin S. Clinical presentation and management of Fasciola hepatica infection: single-center experience[J]. World J Gastroenterol, 2011,17(44):4899-4904. | [8] | Maizels RM, Hewitson JP, Smith KA. Susceptibility and immunity to helminth parasites[J]. Curr Opin Immunol, 2012,24(4):459-466. | [9] | Liu Y, Cai YC, Chen SH, et al. Advances in research on the roles of natural killer T cells in immune responses to parasitic infections[J]. Chin J Parasitol Parasit Dis, 2020,38(4):477-481. (in Chinese) | [9] | ( 刘毅, 蔡玉春, 陈韶红, 等. 自然杀伤T细胞在寄生虫感染免疫中作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(4):477-481.) | [10] | Espino AM, Morales A, Delgado B, et al. Partial immunity to Fasciola hepatica in mice after vaccination with FhSAP2 delivered as recombinant protein or DNA construct[J]. Ethn Dis, 2010, 20(1 suppl 1): S1-17-23. | [11] | Zafra R, Pérez-Ecija RA, Buffoni L, et al. Evaluation of hepatic damage and local immune response in goats immunized with native glutathione S-transferase of Fasciola hepatica[J]. J Comp Pathol, 2010,143(2/3):110-119. | [12] | Luo HL, Zhang WT, Guo ZL, et al. Levels of IL-4 and markers of M2 macrophages at early stage of Fasciola hepatica infection in mice[J]. Chin J Vet Sci, 2013,33(8):1253-1258.(in Chinese) | [12] | ( 罗洪林, 张文韬, 郭智莉, 等. 小鼠感染肝片吸虫早期IL-4/IFN-γ及M2巨噬细胞标记分子的变化[J]. 中国兽医学报, 2013,33(8):1253-1258.) | [13] | Dowling DJ, Hamilton CM, Donnelly S, et al. Major secretory antigens of the helminth Fasciola hepatica activate a suppressive dendritic cell phenotype that attenuates Th17 cells but fails to activate Th2 immune responses[J]. Infect Immun, 2010,78(2):793-801. | [14] | Edholm ES, Rhoo KH, Robert J. Evolutionary aspects of macrophages polarization[J]. Results Probl Cell Differ, 2017,62:3-22. | [15] | Li X, Wang JC, Guan L, et al. Advances in the pathogenesis of cholangiocarcinoma caused by Clonorchis sinensis[J]. Chin J Parasitol Parasit Dis, 2020,38(2):250-254. (in Chinese) | [15] | ( 李潇, 王江畅, 管磊, 等. 华支睾吸虫致胆管癌发生发展的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(2):250-254.) | [16] | Luo H, Zhang Y, Sheng Z, et al. Long noncoding RNA profiling from Fasciola gigantica excretory/secretory product-induced M2 to M1 macrophage polarization[J]. Cell Physiol Biochem, 2018,47(2):505-522. | [17] | Liao CS, Mao FC, Cheng XC. Progress on the role of macrophage polarization in microbial infection[J]. Chin J Prev Vet Med, 2019,41(3):323-327. (in Chinese) | [17] | ( 廖成水, 毛福超, 程相朝. 巨噬细胞极化在微生物感染中的作用研究进展[J]. 中国预防兽医学报, 2019,41(3):323-327.) | [18] | Zheng X, Wang HY. M2 macrophage polarization and the related diseases[J]. Chin Bull Life Sci, 2017,29(9):883-890. (in Chinese) | [18] | ( 郑新, 王红艳. M2型巨噬细胞极化及相关疾病的研究进展[J]. 生命科学, 2017,29(9):883-890.) | [19] | Kim EM, Kwak YS, Yi MH, et al. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo[J]. PLoS Negl Trop Dis, 2017,11(5):e0005614. | [20] | Adams PN, Aldridge A, Vukman KV, et al. Fasciola hepatica tegumental antigens indirectly induce an M2 macrophage-like phenotype in vivo[J]. Parasite Immunol, 2014,36(10):531-539. | [21] | Li DJ, Chu X, Chen L. Research progress of Toll-like receptors and condyloma acuminatum[J]. Jiangxi Med J, 2015(4):371-376. (in Chinese) | [21] | ( 李冬金, 褚昕, 陈丽. Toll样受体与尖锐湿疣研究进展[J]. 江西医药, 2015(4):371-376.) | [22] | Alvarez JI. Inhibition of Toll like receptor immune responses by microbial pathogens[J]. Front Biosci, 2005,10:582-587. | [23] | Janeway CA Jr, Medzhitov R. Innate immune recognition[J]. Annu Rev Immunol, 2002,20(1):197-216. | [24] | Zhang S, Wang Z, Zhu J, et al. Carnosic acid alleviates BDL-induced liver fibrosis through miR-29b-3p-mediated inhibition of the high-mobility group box 1/Toll-like receptor 4 signaling pathway in rats[J]. Front Pharmacol, 2017,8:976. | [25] | Machicado C, Machicado JD, Maco V, et al. Association of Fasciola hepatica infection with liver fibrosis, cirrhosis, and cancer: a systematic review[J]. PLoS Negl Trop Dis, 2016,10(9):e0004962. | [26] | Liu X, Qi YF, Yu YR. Effects of soluble egg antigens on hepatic stellate cells in the progression of schistosomiasis-associated liver fibrosis[J]. Chin J Parasitol Parasit Dis, 2019,37(2):218-222. (in Chinese) | [26] | ( 刘欣, 齐永芬, 鱼艳荣. 血吸虫病肝纤维化中可溶性虫卵抗原对肝星状细胞的作用[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):218-222.) | [27] | de la Torre-Escudero E, Pérez-Sánchez R, Manzano-Román R, et al. Schistosome infections induce significant changes in the host biliary proteome[J]. J Proteomics, 2015,114:71-82. | [28] | Zheng SP, Zhang PG, Chen YX, et al. Inhibition of notch signaling attenuates schistosomiasis hepatic fibrosis via blocking macrophage M2 polarization[J]. PLoS One, 2016,11(11):e0166808. | [29] | Yan C, Li B, Fan F, et al. The roles of Toll-like receptor 4 in the pathogenesis of pathogen-associated biliary fibrosis caused by Clonorchis sinensis[J]. Sci Rep, 2017,7(1):3909. | [30] | Lanzavecchia A, Sallusto F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells[J]. Science, 2000,290(5489):92-97. | [31] | Qu KG, Zhao Q, Jiang J, et al. Immunity to parasitic infection: the role of dendritic cells[J]. Chin J Parasitol Parasit Dis, 2014,32(2):152-156. (in Chinese) | [31] | ( 曲凯歌, 赵权, 姜晶, 等. 树突状细胞在寄生虫感染免疫中的作用[J]. 中国寄生虫学与寄生虫病杂志, 2014,32(2):152-156.) | [32] | Hamilton CM, Dowling DJ, Loscher CE, et al. The Fasciola hepatica tegumental antigen suppresses dendritic cell maturation and function[J]. Infect Immun, 2009,77(6):2488-2498. | [33] | Falcón C, Carranza F, Martínez FF, et al. Excretory-secretory products (ESP) from Fasciola hepatica induce tolerogenic properties in myeloid dendritic cells[J]. Vet Immunol Immunopathol, 2010,137(1/2):36-46. | [34] | Falcón CR, Carranza FA, Aoki P, et al. Adoptive transfer of dendritic cells pulsed with Fasciola hepatica antigens and lipopolysaccharides confers protection against fasciolosis in mice[J]. J Infect Dis, 2012,205(3):506-514. | [35] | Falcón CR, Masih D, Gatti G, et al. Fasciola hepatica Kunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses[J]. PLoS One, 2014,9(12):e114505. | [36] | Meemon K, Sobhon P. Juvenile-specific cathepsin proteases in Fasciola spp.: their characteristics and vaccine efficacies[J]. Parasitol Res, 2015,114(8):2807-2813. | [37] | Ortega-Vargas S, Espitia C, Sahagún-Ruiz A, et al. Moderate protection is induced by a chimeric protein composed of leucine aminopeptidase and cathepsin L1 against Fasciola hepatica challenge in sheep[J]. Vaccine, 2019,37(24):3234-3240. | [38] | Ortega-Vargas S, Espitia C, Sahagún-Ruiz A, et al. Moderate protection is induced by a chimeric protein composed of leucine aminopeptidase and cathepsin L1 against Fasciola hepatica challenge in sheep[J]. Vaccine, 2019,37(24):3234-3240. | [39] | Cheng JL, Li GH. The diagnostic value of combined detection of serum AFU, AFP, GGT, LAP and APT in primary liver cancer[J]. Current Physician, 2020,26(22):30-32. (in Chinese) | [39] | ( 程建良, 李观华. 血清AFU、AFP、GGT、LAP及APT联合检测在原发性肝癌中的诊断价值[J]. 当代医学, 2020,26(22):30-32.) | [40] | Gardiner DL, Trenholme KR, Skinner-Adams TS, et al. Overexpression of leucyl aminopeptidase in Plasmodium falciparum Parasites[J]. J Biol Chem, 2006,281(3):1741-1745. | [41] | Maggioli G, Acosta D, Silveira F, et al. The recombinant gut-associated M17 leucine aminopeptidase in combination with different adjuvants confers a high level of protection against Fasciola hepatica infection in sheep[J]. Vaccine, 2011,29(48):9057-9063. | [42] | Chen JH, Zhang L, Yang N, et al. Characterization of the immune roles of cathepsin L in turbot (Scophthalmus maximus L.) mucosal immunity[J]. Fish Shellfish Immunol, 2020,97:322-335. | [43] | Wu Y, Li L, Xu YW, et al. Schistosoma japonicum soluble worm proteins and recombinant cystatin ameliorate experimental colitis in a murine model[J]. Chin J Parasitol Parasit Dis, 2019,37(2):127-136. (in Chinese) | [43] | ( 武艺, 李路, 徐永伟, 等. 日本血吸虫成虫可溶性蛋白和重组半胱氨酸蛋白酶抑制蛋白抑制小鼠结肠炎的研究[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):127-136.) | [44] | Dixit AK, Dixit P, Sharma RL. Immunodiagnostic/protective role of cathepsin L cysteine proteinases secreted by Fasciola species[J]. Vet Parasitol, 2008,154(3/4):177-184. | [45] | McKerrow JH, Caffrey C, Kelly B, et al. Proteases in parasitic diseases[J]. Annu Rev Pathol, 2006,1:497-536. |
|