[1] | Shen J. Lecture 8 Immune evasion of parasite[J]. Chin J Vet Parasitol, 2004,12(4):57-58. (in Chinese) | [1] | ( 沈杰. 第八讲寄生虫的免疫逃避[J]. 中国兽医寄生虫病, 2004,12(4):57-58.) | [2] | Tong QB, Liu SX, Cao JP. Advances in research of molecules related to the immune evasion of schistosomes[J]. Chin J Parasitol Parasit Dis, 2004,22(1):57-60. (in Chinese) | [2] | ( 童群波, 刘述先, 曹建平. 血吸虫免疫逃避相关分子的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2004,22(1):57-60.) | [3] | Ahmed AK, Mun HS, Aosai FM, et al. Roles of Toxoplasma gondii-derived heat shock protein 70 in host defense against T. gondii infection[J]. Microbiol Immunol, 2004,48(11):911-915. | [4] | Feng XM, Wang YH, Ju XH. Research progress on the mechanisms of antigenic variation in Giardia lamblia[J]. Chin J Parasitol Parasit Dis, 2012,30(4):317-320. (in Chinese) | [4] | ( 冯宪敏, 王月华, 鞠晓红. 蓝氏贾第鞭毛虫表面抗原变异机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2012,30(4):317-320.) | [5] | Huang HB, Yang WT, Wang CF, et al. Progresses on antitumor immune mechanisms of protozoon[J]. Chin J Parasitol Parasit Dis, 2015,33(1):64-67. (in Chinese) | [5] | ( 黄海斌, 杨文涛, 王春凤, 等. 原虫抗肿瘤免疫机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2015,33(1):64-67.) | [6] | Chen QJ, Yin JG. Research and perspectives in parasitology[J]. Chin J Parasitol Parasit Dis, 2007,25(4):342-348. (in Chinese) | [6] | ( 陈启军, 尹继刚. 寄生虫学主要研究进展及发展方向[J]. 中国寄生虫学与寄生虫病杂志, 2007,25(4):342-348.) | [7] | Liu SX, Cao JP. Research progress and prospects for vaccines against parasitic diseases[J]. Chin J Parasitol Parasit Dis, 2005,23(z1):362-368, 373. (in Chinese) | [7] | ( 刘述先, 曹建平. 寄生虫病疫苗研究的现状及展望[J]. 中国寄生虫学与寄生虫病杂志, 2005,23(z1):362-368, 373. | [8] | Semblat JP, Ghumra A, Czajkowsky DM, et al. Identification of the minimal binding region of a Plasmodium falciparum IgM binding PfEMP1 domain[J]. Mol Biochem Parasitol, 2015,201(1):76-82. | [9] | Kraemer SM, Smith JD. A family affair: var genes, PfEMP1 binding, and malaria disease[J]. Curr Opin Microbiol, 2006,9(4):374-380. | [10] | Smith JD, Chitnis CE, Craig AG, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes[J]. Cell, 1995,82(1):101-110. | [11] | Hviid L, Jensen AT. PfEMP1-A parasite protein family of key importance in Plasmodium falciparum malaria immunity and pathogenesis[J]. Adv Parasitol, 2015,88:51-84. | [12] | Higgins MK, Carrington M. Sequence variation and structural conservation allows development of novel function and immune evasion in parasite surface protein families[J]. Protein Sci, 2014,23(4):354-365. | [13] | Chan JA, Drew DR, Reiling L, et al. Low levels of human antibodies to gametocyte-infected erythrocytes contrasts the PfEMP1-dominant response to asexual stages in P. falciparum malaria[J]. Front Immunol, 2018,9:3126. | [14] | Dolan SA, Miller LH, Wellems TE. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum[J]. J Clin Invest, 1990,86(2):618-624. | [15] | Persson KE, McCallum FJ, Reiling L, et al. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies[J]. J Clin Invest, 2008,118(1):342-351. | [16] | Stubbs J, Simpson KM, Triglia T, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes[J]. Science, 2005,309(5739):1384-1387. | [17] | Tham WH, Wilson DW, Reiling L, et al. Antibodies to reticulocyte binding protein-like homologue 4 inhibit invasion of Plasmodium falciparum into human erythrocytes[J]. Infect Immun, 2009,77(6):2427-2435. | [18] | Duraisingh MT, Triglia T, Ralph SA, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes[J]. Embo J, 2003,22(5):1047-1057. | [19] | Ikarashi M, Nakashima H, Kinoshita M, et al. Distinct development and functions of resident and recruited liver Kupffer cells/macrophages[J]. J Leukoc Biol, 2013,94(6):1325-1336. | [20] | Casares S, Richie TL. Immune evasion by malaria parasites: a challenge for vaccine development[J]. Curr Opin Immunol, 2009,21(3):321-330. | [21] | Gomes PS, Bhardwaj J, Rivera-Correa J, et al. Immune escape strategies of malaria parasites[J]. Front Microbiol, 2016,7:1617. | [22] | Rénia L, Goh YS. Malaria parasites: the great escape[J]. Front Immunol, 2016,7:463. | [23] | Holder AA. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria[J]. Parasitology, 2009,136(12):1445-1456. | [24] | Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum[J]. Nature, 2002,419(6906):498-511. | [25] | Saito F, Hirayasu K, Satoh T, et al. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors[J]. Nature, 2017,552(7683):101-105. | [26] | Petter M, Haeggstr?m M, Khattab A, et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns[J]. Mol Biochem Parasitol, 2007,156(1):51-61. | [27] | Goel S, Palmkvist M, Moll K, et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria[J]. Nat Med, 2015,21(4):314-317. | [28] | Deans AM, Rowe JA. Plasmodium falciparum: rosettes do not protect merozoites from invasion-inhibitory antibodies[J]. Exp Parasitol, 2006,112(4):269-273. | [29] | Yam XY, Niang M, Madnani KG, et al. Three is a crowd - new insights into rosetting in Plasmodium falciparum[J]. Trends Parasitol, 2017,33(4):309-320. | [30] | Gomes PS, Bhardwaj J, Rivera-Correa J, et al. Immune escape strategies of malaria parasites[J]. Front Microbiol, 2016,7:1617. | [31] | Singh H, Madnani K, Lim YB, et al. Expression dynamics and physiologically relevant functional study of STEVOR in asexual stages of Plasmodium falciparum infection[J]. Cell Microbiol, 2017,19(6):e12715. | [32] | Yin LT, Cao L, Meng XL, et al. Bioinformatics analysis of the structure and function of the gene encoding heat shock protein 70 from Toxoplasma gondii[J]. J Pathog Biol, 2011,6(7):513-516. (in Chinese) | [32] | ( 殷丽天, 曹蕾, 孟晓丽, 等. 刚地弓形虫热休克70基因编码蛋白结构与功能的生物信息学分析[J]. 中国病原生物学杂志, 2011,6(7):513-516.) | [33] | Czarnewski P, Araújo ECB, Oliveira MC, et al. Recombinant TgHSP70 immunization protects against Toxoplasma gondii brain cyst formation by enhancing inducible nitric oxide expression[J]. Front Cell Infect Microbiol, 2017,7:142. | [34] | Makino M, Uemura N, Moroda M, et al. Innate immunity in DNA vaccine with Toxoplasma gondii-heat shock protein 70 gene that induces DC activation and Th1 polarization[J]. Vaccine, 2011,29(10):1899-1905. | [35] | Dautu G, Munyaka B, Carmen G, et al. Toxoplasma gondii: DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential[J]. Exp Parasitol, 2007,116(3):273-282. | [36] | Mun HS, Aosai FM, Yano A. Role of Toxoplasma gondii HSP70 and Toxoplasma gondii HSP30/bag1 in antibody formation and prophylactic immunity in mice experimentally infected with Toxoplasma gondii[J]. Microbiol Immunol, 1999,43(5):471-479. | [37] | Gedik Y, Gül?e īz S, Can H, et al. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model[J]. Trials Vaccinol, 2016,5:15-23. | [38] | Soldati D, Dubremetz JF, Lebrun M. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii[J]. Int J Parasitol, 2001,31(12):1293-1302. | [39] | Ismael AB, Sekkai D, Collin C, et al. The MIC3 gene of Toxoplasma gondii is a novel potent vaccine candidate against toxoplasmosis[J]. Infect Immun, 2003,71(11):6222-6228. | [40] | Zhang D, Jiang N, Chen Q. Vaccination with recombinant adenoviruses expressing Toxoplasma gondii MIC3, ROP9, and SAG2 provide protective immunity against acute toxoplasmosis in mice[J]. Vaccine, 2019,37(8):1118-1125. | [41] | Ismael AB, Dimier-Poisson I, Lebrun M, et al. Mic1-3 knockout of Toxoplasma gondii is a successful vaccine against chronic and congenital toxoplasmosis in mice[J]. J Infect Dis, 2006,194(8):1176-1183. | [42] | Yang DY, Liu J, Hao P, et al. MIC3, a novel cross-protective antigen expressed in Toxoplasma gondii and Neospora caninum[J]. Parasitol Res, 2015,114(10):3791-3799. | [43] | Gong P, Cao L, Guo Y, et al. Toxoplasma gondii: protective immunity induced by a DNA vaccine expressing GRA1 and MIC3 against toxoplasmosis in BALB/c mice[J]. Exp Parasitol, 2016,166:131-136. | [44] | Denkers EY, Bzik DJ, Fox BA, et al. An inside job: hacking into Janus kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan Toxoplasma gondii[J]. Infect Immun, 2012,80(2):476-482. | [45] | Ong YC, Reese ML, Boothroyd JC. Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6[J]. J Biol Chem, 2010,285(37):28731-28740. | [46] | Butcher BA, Fox BA, Rommereim LM, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control[J]. PLoS Pathog, 2011,7(9):e1002236. | [47] | Jensen KDC, Hu K, Whitmarsh RJ, et al. Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15[J]. Infect Immun, 2013,81(6):2156-2167. | [48] | Dunay IR, DaMatta RA, Fux B, et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii[J]. Immunity, 2008,29(2):306-317. | [49] | Baird JR, Fox BA, Sanders KL, et al. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment[J]. Cancer Res, 2013,73(13):3842-3851. | [50] | Fox BA, Sanders KL, Rommereim LM, et al. Secretion of rhoptry and dense granule effector proteins by nonreplicating Toxoplasma gondii uracil auxotrophs controls the development of antitumor immunity[J]. PLoS Genet, 2016,12(7):e1006189. | [51] | Du J, An R, Chen L, et al. Toxoplasma gondii virulence factor ROP18 inhibits the host NF-κB pathway by promoting p65 degradation[J]. J Biol Chem, 2014,289(18):12578-12592. | [52] | Fentress SJ, Behnke MS, Dunay IR, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence[J]. Cell Host Microbe, 2010,8(6):484-495. | [53] | Yamamoto M, Ma JS, Mueller C, et al. ATF6beta is a host cellular target of the Toxoplasma gondii virulence factor ROP18[J]. J Exp Med, 2011,208(7):1533-1546. | [54] | Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors[J]. Nat Rev Microbiol, 2012,10(11):766-778. | [55] | McLeod R, Estes RG, Mack DG, et al. Immune response of mice to ingested Toxoplasma gondii: a model of Toxoplasma infection acquired by ingestion[J]. J Infect Dis, 1984,149(2):234-244. | [56] | Luft B-J, Remington J-S. Toxoplasmic encephalitis in AIDS[J]. Clin Infect Dis, 1992,15(2):211-222. | [57] | Radke JR, Guerini MN, Jerome M, et al. A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii[J]. Mol Biochem Parasitol, 2003,131(2):119-127. | [58] | Jung C, Lee CY, Grigg ME. The SRS superfamily of Toxoplasma surface proteins[J]. Int J Parasitol, 2004,34(3):285-296. | [59] | Jing BQ, Xie YE, HU WM, et al. Immunogenecity of recombinant Leishmania donovani peroxidoxin-1, tryparedoxin peroxidase, hypothetical protein CAJ07026.1 and GDP-mannose pyrophosphorylase in BALB/c mice[J]. Chin J Parasitol Parasit Dis, 2017,35(6):563-569. (in Chinese) | [59] | ( 敬保迁, 谢勇恩, 胡为民, 等. 重组杜氏利什曼原虫Pxn1、TryP、假定蛋白CAJ07026和GDPMP蛋白刺激BALB/c小鼠的免疫应答状态[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(6):563-569.) | [60] | Bhattacharya P, Ghosh S, Ejazi SA, et al. Induction of IL-10 and TGFβ from CD4+CD25+FoxP3+T cells correlates with parasite load in Indian kala-azar patients infected with Leishmania donovani [J]. PLoS Negl Trop Dis, 2016,10(2):e0004422. | [61] | Bayih AG, Daifalla NS, Gedamu L. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant [J]. PLoS Negl Trop Dis, 2014,8(12):e3391. | [62] | Barr SD, Gedamu L. Role of peroxidoxins in Leishmania chagasi survival. Evidence of an enzymatic defense against nitrosative stress[J]. J Biol Chem, 2003,278(12):10816-10823. | [63] | Stober CB, Lange UG, Roberts MTM, et al. From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine Leishmania major infection[J]. Vaccine, 2006,24(14):2602-2616. | [64] | Li JF. Preliminary studies of DNA vaccine with amastin gene against Leishmania donovani[D]. Chengdu: Sichuan University, 2007. ( in Chinese) | [64] | ( 李金福. 杜氏利什曼原虫amastin基因DNA疫苗的初步研究[D]. 成都: 四川大学, 2007.) | [65] | Carranza PG, Lujan HD. New insights regarding the biology of Giardia lamblia[J]. Microbes Infect, 2010,12(1):71-80. | [66] | Chen XX, Fu TX, Zhao CL, et al. Experimental study on the protective antigen of G. intestinalis[J]. Chin Trop Med, 2007,7(12):2177-2179. (in Chinese) | [66] | ( 陈锡欣, 傅婷霞, 赵长磊, 等. 蓝氏贾第鞭毛虫保护性抗原的实验研究[J]. 中国热带医学, 2007,7(12):2177-2179.) | [67] | Rudenko G. African trypanosomes: the genome and adaptations for immune evasion[J]. Essays Biochem, 2011,51:47-62. | [68] | Nash TE, Banks SM, Alling DW, et al. Frequency of variant antigens in Giardia lamblia[J]. Exp Parasitol, 1990,71(4):415-421. | [69] | Wang Y, Tian XF. Immune evasion mechanisms of Giardia lamblia[J]. Chin J Zoonoses, 2013,29(9):909-913. (in Chinese) | [69] | ( 王洋, 田喜凤. 蓝氏贾第鞭毛虫的免疫逃避机制[J]. 中国人兽共患病学报, 2013,29(9):909-913.) |
|