中国寄生虫学与寄生虫病杂志 ›› 2024, Vol. 42 ›› Issue (3): 399-406.doi: 10.12140/j.issn.1000-7423.2024.03.017
收稿日期:
2024-01-29
修回日期:
2024-05-23
出版日期:
2024-06-30
发布日期:
2024-07-16
通讯作者:
*朱晓彤(1983—),女,博士,教授,从事疟疾抗感染免疫机制和疟原虫侵袭相关蛋白分子功能的研究。E-mail:xtzhu@cmu.edu.cn
作者简介:
王蓉(2002—),女,本科生,从事免疫学方向研究。E-mail: 13322469436@163.com
基金资助:
WANG Rong1(), XU Jie2, ZHU Xiaotong3,*(
)
Received:
2024-01-29
Revised:
2024-05-23
Online:
2024-06-30
Published:
2024-07-16
Supported by:
摘要:
疟疾仍是一项重大的全球卫生挑战。现阶段由于药物和相关技术的应用,一定程度上减少了疾病的负担,但发病率和死亡率仍然非常高。随着耐药性的广泛出现,亟需探索和研制新的防疟根本策略,有效控制和阻断疟疾的传播。针对有性生殖阶段的传播阻断疫苗(TBV)是一个很好的选择,其旨在控制疟原虫从人类宿主传播到蚊媒媒介。TBV的研制受到了国内外研究者的重视,被认为是防治疟疾的新技术之一。本文总结了TBV的研究和开发,以及候选抗原的发现和进展,为TBV的进一步研究提供理论参考。
中图分类号:
王蓉, 徐洁, 朱晓彤. 疟原虫有性生殖传播阻断疫苗的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 399-406.
WANG Rong, XU Jie, ZHU Xiaotong. Research advances on transmission-blocking vaccines targeting Plasmodium sexual stage[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2024, 42(3): 399-406.
[1] | Ashour DS, Othman AA. Parasite-bacteria interrelationship[J]. Parasitol Res, 2020, 119(10): 3145-3164. |
[2] | World Health Organization. World malaria report 2023 [EB/OL](2023-11-30) [2024-02-14]. https://wwwwhoint/publications/i/item/9789240086173 |
[3] | Feng J, Zhang L, Xia ZG, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 421-428. (in Chinese) |
(丰俊, 张丽, 夏志贵, 等. 中国消除疟疾: 重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421-428.)
doi: 10.12140/j.issn.1000-7423.2021.04.001 |
|
[4] | Zhang L, Yi BY, Yin JH, et al. Epidemiological characteristics of malaria in China, 2022[J]. Chin J Parasitol Parasit Dis, 2023, 41(2): 137-141. (in Chinese) |
(张丽, 易博禹, 尹建海, 等. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 137-141.)
doi: 10.12140/j.issn.1000-7423.2023.02.002 |
|
[5] |
Moyes CL, Athinya DK, Seethaler T, et al. Evaluating insecticide resistance across African districts to aid malaria control decisions[J]. Proc Natl Acad Sci USA, 2020, 117(36): 22042-22050.
doi: 10.1073/pnas.2006781117 pmid: 32843339 |
[6] | Stokes BH, Dhingra SK, Rubiano K, et al. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness[J]. Elife, 2021, 10: e66277. |
[7] | Richie TL, Saul A. Progress and challenges for malaria vaccines[J]. Nature, 2002, 415(6872): 694-701. |
[8] |
Bettencourt P. Current challenges in the identification of pre-erythrocytic malaria vaccine candidate antigens[J]. Front Immunol, 2020, 11:190.
doi: 10.3389/fimmu.2020.00190 pmid: 32153565 |
[9] | Wang J, Zheng WQ, Liu F, et al. Characterization of Pb51 in Plasmodium berghei as a malaria vaccine candidate targeting both asexual erythrocytic proliferation and transmission[J]. Malar J, 2017, 16(1): 458. |
[10] | Alves E, Salman AM, Leoratti F, et al. Evaluation of Plasmodium vivax cell-traversal protein for ookinetes and sporozoites as a preerythrocytic P. vivax vaccine[J]. Clin Vaccine Immunol, 2017, 24(4): e00501-e00516. |
[11] |
Miura K, Tachibana M, Takashima E, et al. Malaria transmission-blocking vaccines: wheat germ cell-free technology can accelerate vaccine development[J]. Expert Rev Vaccines, 2019, 18(10): 1017-1027.
doi: 10.1080/14760584.2019.1674145 pmid: 31566026 |
[12] |
Tsuboi T, Tachibana M, Kaneko O, et al. Transmission-blocking vaccine of vivax malaria[J]. Parasitol Int, 2003, 52(1): 1-11.
pmid: 12543142 |
[13] | El-Moamly AA, El-Sweify MA. Malaria vaccines: the 60-year journey of hope and final success-lessons learned and future prospects[J]. Trop Med Health, 2023, 51(1): 29. |
[14] |
Guttery DS, Roques M, Holder AA, et al. Commit and transmit: molecular players in Plasmodium sexual development and zygote differentiation[J]. Trends Parasitol, 2015, 31(12): 676-685.
doi: S1471-4922(15)00173-7 pmid: 26440790 |
[15] | Reece SE, Drew DR, Gardner A. Sex ratio adjustment and kin discrimination in malaria parasites[J]. Nature, 2008, 453(7195): 609-614. |
[16] | Liu F, Yang F, Wang YR, et al. A conserved malaria parasite antigen Pb22 plays a critical role in male gametogenesis in Plasmodium berghei[J]. Cell Microbiol, 2021, 23(3): e13294. |
[17] |
Kou X, Zheng WQ, Du F, et al. Characterization of a Plasmodium berghei sexual stage antigen PbPH as a new candidate for malaria transmission-blocking vaccine[J]. Parasit Vectors, 2016, 9: 190.
doi: 10.1186/s13071-016-1459-8 pmid: 27038925 |
[18] | Tachibana M, Ishino T, Takashima E, et al. A male gametocyte osmiophilic body and microgamete surface protein of the rodent malaria parasite Plasmodium yoelii (PyMiGS) plays a critical role in male osmiophilic body formation and exflagellation[J]. Cell Microbiol, 2018, 20(5): e12821. |
[19] | Bansal GP, Weinstein CS, Kumar N. Insight into phagocytosis of mature sexual (gametocyte) stages of Plasmodium falciparum using a human monocyte cell line[J]. Acta Trop, 2016, 157: 96-101. |
[20] |
van Dijk MR, Janse CJ, Thompson J, et al. A central role for P48/45 in malaria parasite male gamete fertility[J]. Cell, 2001, 104(1): 153-164.
pmid: 11163248 |
[21] |
Eksi S, Czesny B, van Gemert GJ, et al. Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production[J]. Mol Microbiol, 2006, 61(4): 991-998.
pmid: 16879650 |
[22] | Chowdhury DR, Angov E, Kariuki T, et al. A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli[J]. PLoS One, 2009, 4(7): e6352. |
[23] |
Arredondo SA, Kappe SHI. The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle[J]. Int J Parasitol, 2017, 47(7): 409-423.
doi: S0020-7519(16)30253-3 pmid: 27899328 |
[24] | Williamson KC, Criscio MD, Kaslow DC. Cloning and expression of the gene for Plasmodium falciparum transmission-blocking target antigen, Pfs230[J]. Mol Biochem Parasitol, 1993, 58(2): 355-358. |
[25] |
Molina-Cruz A, Canepa GE, Barillas-Mury C. Plasmodium P47: a key gene for malaria transmission by mosquito vectors[J]. Curr Opin Microbiol, 2017, 40: 168-174.
doi: S1369-5274(17)30136-4 pmid: 29229188 |
[26] |
Templeton TJ, Keister DB, Muratova O, et al. Adherence of erythrocytes during exflagellation of Plasmodium falciparum microgametes is dependent on erythrocyte surface sialic acid and glycophorins[J]. J Exp Med, 1998, 187(10): 1599-1609.
doi: 10.1084/jem.187.10.1599 pmid: 9584138 |
[27] | Tao DY, Ubaida-Mohien C, Mathias DK, et al. Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology[J]. Mol Cell Proteomics, 2014, 13(10): 2705-2724. |
[28] | Marin-Mogollon C, van de Vegte-Bolmer M, van Gemert GJ, et al. The Plasmodium falciparum male gametocyte protein P230p, a paralog of P230, is vital for ookinete formation and mosquito transmission[J]. Sci Rep, 2018, 8(1): 14902. |
[29] | van Dijk MR, Khan SM, et al. Three members of the 6-cys protein family of Plasmodium play a role in gamete fertility[J]. PLoS Pathog, 2010, 6(4): e1000853. |
[30] | van Schaijk BC, van Dijk MR, van de Vegte-Bolmer M, et al. Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum[J]. Mol Biochem Parasitol, 2006, 149(2): 216-222. |
[31] | Brukman NG, Li X, Podbilewicz B. Fusexins, HAP2/GCS1 and evolution of gamete fusion[J]. Front Cell DevBiol, 2021, 9:824024. |
[32] |
Tentokam BCN, Amaratunga C, Alani NAH, et al. Naturally acquired antibody response to malaria transmission blocking vaccine candidate Pvs230 domain 1[J]. Front Immunol, 2019, 10: 2295.
doi: 10.3389/fimmu.2019.02295 pmid: 31636633 |
[33] |
Moskalyk LA, Oo MM, Jacobs-Lorena M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti[J]. Insect Mol Biol, 1996, 5(4): 261-268.
doi: 10.1111/j.1365-2583.1996.tb00100.x pmid: 8933177 |
[34] | Li FW, Patra KP, Vinetz JM. An anti-chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito[J]. J Infect Dis, 2005, 192(5): 878-887. |
[35] |
Li FW, Patra KP, Yowell CA, et al. Apical surface expression of aspartic protease Plasmepsin 4, a potential transmission-blocking target of the Plasmodium ookinete[J]. J Biol Chem, 2010, 285(11): 8076-8083.
doi: 10.1074/jbc.M109.063388 pmid: 20056606 |
[36] | Wang PP, Jiang XF, Bai J, et al. Characterization of PSOP26 as an ookinete surface antigen with improved transmission-blocking activity when fused with PSOP25[J]. Parasit Vectors, 2022, 15(1): 175. |
[37] |
Saxena AK, Wu YM, Garboczi DN. Plasmodium p25 and p28 surface proteins: potential transmission-blocking vaccines[J]. Eukaryot Cell, 2007, 6(8): 1260-1265.
doi: 10.1128/EC.00060-07 pmid: 17557884 |
[38] |
Tomas AM, Margos G, Dimopoulos G, et al. P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions[J]. EMBO J, 2001, 20(15): 3975-3983.
doi: 10.1093/emboj/20.15.3975 pmid: 11483501 |
[39] | Zheng L, Xu WM, Liu YJ, et al. Transmission-blocking vaccine candidate of Plasmodium vivax Pvs25 is highly conservative among Chinese isolates[J]. Chin J Parasitol Parasit Dis, 2004, 22(1): 16-19. (in Chinese) |
(郑丽, 徐卫民, 刘英杰, 等. 间日疟原虫传播阻断疫苗候选抗原Pvs25中国分离株高度保守[J]. 中国寄生虫学与寄生虫病杂志, 2004, 22(1): 16-19.) | |
[40] | Zheng WQ, Kou X, Du YT, et al. Identification of three ookinete-specific genes and evaluation of their transmission-blocking potentials in Plasmodium berghei[J]. Vaccine, 2016, 34(23): 2570-2578. |
[41] |
Ukegbu CV, Giorgalli M, Tapanelli S, et al. PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector[J]. Proc Natl Acad Sci USA, 2020, 117(13): 7363-7373.
doi: 10.1073/pnas.1919709117 pmid: 32165544 |
[42] | Tachibana M, Iriko H, Baba M, et al. PSOP1, putative secreted ookinete protein 1, is localized to the micronemes of Plasmodium yoelii and P. berghei ookinetes[J]. Parasitol Int, 2021, 84: 102407. |
[43] | Coutinho-Abreu IV, Ramalho-Ortigao M. Transmission blocking vaccines to control insect-borne diseases: a review[J]. Mem Inst Oswaldo Cruz, 2010, 105(1): 1-12. |
[44] |
Lavazec C, Boudin C, Lacroix R, et al. Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparumtransmission-blocking vaccine[J]. Infect Immun, 2007, 75(4): 1635-1642.
pmid: 17283100 |
[45] |
Dinglasan RR, Kalume DE, Kanzok SM, et al. Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen[J]. Proc Natl Acad Sci USA, 2007, 104(33): 13461-13466.
pmid: 17673553 |
[46] |
Dinglasan RR, Jacobs-Lorena M. Flipping the paradigm on malaria transmission-blocking vaccines[J]. Trends Parasitol, 2008, 24(8): 364-370.
doi: 10.1016/j.pt.2008.05.002 pmid: 18599352 |
[47] | Lecona-Valera AN, Tao DY, Rodríguez MH, et al. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development[J]. Parasit Vectors, 2016, 9(1): 274. |
[48] |
Mathias DK, Plieskatt JL, Armistead JS, et al. Expression, immunogenicity, histopathology, and potency of a mosquito-based malaria transmission-blocking recombinant vaccine[J]. Infect Immun, 2012, 80(4): 1606-1614.
doi: 10.1128/IAI.06212-11 pmid: 22311924 |
[49] |
Armistead JS, Morlais I, Mathias DK, et al. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivaxmalaria[J]. Infect Immun, 2014, 82(2): 818-829.
doi: 10.1128/IAI.01222-13 pmid: 24478095 |
[50] | Zhang GW, Niu GD, Franca CM, et al. Anopheles midgut FREP1 mediates Plasmodium invasion[J]. J Biol Chem, 2015, 290(27): 16490-16501. |
[51] | Dong YM, Simões ML, Marois E, et al. CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection[J]. PLoS Pathog, 2018, 14(3): e1006898. |
[52] | Nourani L, Mehrizi AA, Pirahmadi S, et al. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector[J]. Infect Genet Evol, 2023, 109:105419. |
[53] | Cui YJ, Niu GD, Li VL, et al. Analysis of blood-induced Anopheles gambiae midgut proteins and sexual stage Plasmodium falciparum interaction reveals mosquito genes important for malaria transmission[J]. Sci Rep, 2020, 10(1): 14316. |
[54] | Liu F, Li L, Zheng WQ, et al. Characterization of Plasmodium berghei Pbg37 as both a pre- and post-fertilization antigen with transmission-blocking potential[J]. Infect Immun, 2018, 86(8): e00785. |
[55] | Yang F, Liu F, Yu XX, et al. Evaluation of two sexual-stage antigens as bivalent transmission-blocking vaccines in rodent malaria[J]. Parasit Vectors, 2021, 14(1): 241. |
[56] |
Sala KA, Nishiura H, Upton LM, et al. The Plasmodium berghei sexual stage antigen PSOP12 induces anti-malarial transmission blocking immunity both in vivo and in vitro[J]. Vaccine, 2015, 33(3): 437-445.
doi: 10.1016/j.vaccine.2014.11.038 pmid: 25454088 |
[57] | Kou X, Zheng WQ, Du F, et al. Erratum to: characterization of a Plasmodium berghei sexual stage antigen PbPH as a new candidate for malaria transmission-blocking vaccine[J]. Parasit Vectors, 2017, 10(1): 84. |
[58] | Carter R. Transmission blocking malaria vaccines[J]. Vaccine, 2001, 19(17/18/19): 2309-2314. |
[59] | Mair GR, Lasonder E, Garver LS, et al. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development[J]. PLoS Pathog, 2010, 6(2): e1000767. |
[60] |
Shi YP, Das P, Holloway B, et al. Development, expression, and murine testing of a multistage Plasmodium falciparum malaria vaccine candidate[J]. Vaccine, 2000, 18(25): 2902-2914.
pmid: 10812234 |
[61] | Mizutani M, Iyori M, Blagborough AM, et al. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites[J]. Infect Immun, 2014, 82(10): 4348-4357. |
[62] | Zheng L, Pang W, Qi ZM, et al. Effects of transmission-blocking vaccines simultaneously targeting pre- and post-fertilization antigens in the rodent malaria parasite Plasmodium yoelii[J]. Parasit Vectors, 2016, 9(1): 433. |
[63] | Singh SK, Plieskatt J, Chourasia BK, et al. A reproducible and scalable process for manufacturing a Pfs48/45 based Plasmodium falciparum transmission-blocking vaccine[J]. Front Immunol, 2020, 11:606266. |
[64] | da Veiga GTS, Moriggi MR, Vettorazzi JF, et al. Plasmodium vivax vaccine: what is the best way to go?[J]. Front Immunol, 2022, 13:910236. |
[65] |
Tachibana M, Sato C, Otsuki H, et al. Plasmodium vivax gametocyte protein Pvs230 is a transmission-blocking vaccine candidate[J]. Vaccine, 2012, 30(10): 1807-1812.
doi: 10.1016/j.vaccine.2012.01.003 pmid: 22245309 |
[66] | Mariano RMDS, Gonçalves AAM, Oliveira DS, et al. A review of major patents on potential malaria vaccine targets[J]. Pathogens, 2023, 12(2): 247. |
[67] | Rui E, Fernandez-Becerra C, Takeo S, et al. Plasmodium vivax: comparison of immunogenicity among proteins expressed in the cell-free systems of Escherichia coli and wheat germ by suspension array assays[J]. Malar J, 2011, 10: 192. |
[68] |
Tachibana M, Miura K, Takashima E, et al. Identification of domains within Pfs230 that elicit transmission blocking antibody responses[J]. Vaccine, 2019, 37(13): 1799-1806.
doi: S0264-410X(19)30216-6 pmid: 30824357 |
[69] |
Tachibana M, Suwanabun N, Kaneko O, et al. ,, Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization[J]. Vaccine, 2015, 33(16): 1901-1908.
doi: 10.1016/j.vaccine.2015.03.008 pmid: 25765968 |
[70] | Mamedov T, Cicek K, Miura K, et al. A Plant-produced in vivo deglycosylated full-length Pfs48/45 as a transmission-blocking vaccine candidate against malaria[J]. Sci Rep, 2019, 9(1): 9868. |
[71] | Asali S, Raz A, Turki H, et al. Restricted genetic heterogeneity of the Plasmodium vivax transmission-blocking vaccine (TBV) candidate Pvs48/45 in a low transmission setting: Implications for the Plasmodium vivax malaria vaccine development[J]. Infect Genet Evol, 2021, 89: 104710. |
[72] |
McLeod B, Mabrouk MT, Miura K, et al. Vaccination with a structure-based stabilized version of malarial antigen Pfs48/45 elicits ultra-potent transmission-blocking antibody responses[J]. Immunity, 2022, 55(9): 1680-1692.e8.
doi: 10.1016/j.immuni.2022.07.015 pmid: 35977542 |
[73] |
Blagborough AM, Musiychuk K, Bi H, et al. Transmission blocking potency and immunogenicity of a plant-produced Pvs25-based subunit vaccine against Plasmodium vivax[J]. Vaccine, 2016, 34(28): 3252-3259.
doi: 10.1016/j.vaccine.2016.05.007 pmid: 27177945 |
[74] | Malkin EM, Durbin AP, Diemert DJ, et al. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria[J]. Vaccine, 2005, 23(24): 3131-3138. |
[75] | Sagara I, Healy SA, Assadou MH, et al. Safety and immunogenicity of Pfs25H-EPA/Alhydrogel, a transmission-blocking vaccine against Plasmodium falciparum: a randomised, double-blind, comparator-controlled, dose-escalation study in healthy Malian adults[J]. Lancet Infect Dis, 2018, 18(9): 969-982. |
[76] |
Chichester JA, Green BJ, Jones RM, et al. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: a phase 1 dose-escalation study in healthy adults[J]. Vaccine, 2018, 36(39): 5865-5871.
doi: S0264-410X(18)31159-9 pmid: 30126674 |
[77] | Wu YM, Ellis RD, Shaffer D, et al. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51[J]. PLoS One, 2008, 3(7): e2636. |
[78] | Patra KP, Li FW, Carter D, et al. Alga-produced malaria transmission-blocking vaccine candidate Pfs25 formulated with a human use-compatible potent adjuvant induces high-affinity antibodies that block Plasmodium falciparum infection of mosquitoes[J]. Infect Immun, 2015, 83(5): 1799-1808. |
[79] | Yu SS, Wang J, Luo X, et al. Transmission-blocking strategies against malaria parasites during their mosquito stages[J]. Front Cell Infect Microbiol, 2022, 12:820650. |
[80] | Ayala D, Akone-Ella O, Rahola N, et al. Natural Wolbachia infections are common in the major malaria vectors in Central Africa[J]. Evol Appl, 2019, 12(8): 1583-1594. |
[81] | Walker T, Quek S, Jeffries CL, et al. Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes[J]. Curr Biol, 2021, 31(11): 2310-2320.e5. |
[82] | Gomes FM, Hixson BL, Tyner MDW, et al. Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission[J]. Proc Natl Acad Sci USA, 2017, 114(47): 12566-12571. |
[83] | Gabrieli P, Caccia S, Varotto-Boccazzi I, et al. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission[J]. Front Microbiol, 2021, 12: 630438. |
[84] |
Duffy PE. Transmission-blocking vaccines: harnessing herd immunity for malaria elimination[J]. Expert Rev Vaccines, 2021, 20(2): 185-198.
doi: 10.1080/14760584.2021.1878028 pmid: 33478283 |
[85] |
Coelho CH, Rappuoli R, Hotez PJ, et al. Transmission-blocking vaccines for malaria: time to talk about vaccine introduction[J]. Trends Parasitol, 2019, 35(7): 483-486.
doi: S1471-4922(19)30084-4 pmid: 31153722 |
[1] | 杨和仙, 黄东升, 聂凡刚. 云南省保山市2023年疟疾疫情及防控措施分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(3): 418-420. |
[2] | 张丽, 夏志贵. 2023年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 135-139. |
[3] | 许艳, 王龙江, 孔祥礼, 李曰进, 卜灿灿, 闫歌, 张本光, 王用斌. 2017—2022年山东省输入性疟疾流行病学特征[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 140-146. |
[4] | 文静, 郭明权, 张蓓, 张腾飞, 潘帅, 孙丹凤, 戚伟强. 2012—2022年上海市公共卫生临床中心输入性疟疾病例流行病学分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 147-152. |
[5] | 燕贺, 黄芳, 丰俊, 尹建海, 夏志贵, 曹建平. 2010—2018年云南中缅边境地区恶性疟原虫抗磺胺多辛-乙胺嘧啶药物基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 153-159. |
[6] | 谭涅, 焦世铭, 丁艳, 朱成宇, 徐文岳. 肝细胞局部补体活化对疟原虫红外期发育影响的研究[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 169-176. |
[7] | 易佳, 吴冬妮, 董小蓉, 朱红, 林文, 张聪, 孙凌聪. 湖北省消除疟疾前后输入性疟疾实验室检测能力分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 177-181. |
[8] | 何伊莎, 谢朝勇, 王毓, 李燕菁. 南京市新型冠状病毒感染疫情暴发前后输入性疟疾流行特征及病例诊断分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(2): 267-271. |
[9] | 朱民, 张浩, 吴立明, 张宸罡, 张耀光, 王真瑜, 陈健, 吴寰宇, 陈昕. 上海市消除疟疾后输入性疟疾监测响应系统实施与成效分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 91-97. |
[10] | 韩竹茜, 朱晓彤. 疟原虫内膜复合体蛋白研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 111-116. |
[11] | 李春燕, 张福艳, 史鹏, 田丰源. 2011—2023年四川省自贡市输入性疟疾疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 129-133. |
[12] | 杨硕, 夏尚, 闫书宁, 薛靖波, 史本云, 郝瑜婉, 李梦茹, 梁家瑞, 夏志贵, 郑彬. 基于国际贸易关系的我国输入性疟疾风险来源分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 744-748. |
[13] | 郭帅, 何彪, 高源利, 范永铃, 朱锋, 丁艳, 刘太平, 徐文岳. 鼠疟原虫感染大鼠和小鼠的种特异性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 539-545. |
[14] | 龚艳凤, 李紫芬, 唐乖, 黄美琴, 周炳华, 胡强. 2015—2022年江西省疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 586-592. |
[15] | 周瑞敏, 纪鹏慧, 李素华, 杨成运, 刘颖, 钱丹, 邓艳, 鲁德领, 赵玉玲, 赵东阳, 张红卫. 河南省自赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 593-600. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||