[1] | Qin GN, Liu YY, Gao N, et al. Experience of ZHANG Boli in staged treating very early onset inflammatory bowel disease based on the theory of “similar diseases and syndromes of damp-turbidity-phlegm-rheum”[J]. J Tradit Chin Med, 2023, 64(22): 2282-2286. (in Chinese) | | (秦广宁, 刘耀远, 高宁, 等. 张伯礼基于“湿浊痰饮类病”学说分期论治极早发型炎症性肠病经验[J]. 中医杂志, 2023, 64(22): 2282-2286.) | [2] | Shao BL, Yang WJ, Cao Q. Landscape and predictions of inflammatory bowel disease in China: China will enter the compounding prevalence stage around 2030[J]. Front Public Health, 2022, 10: 1032679. | [3] | Li MR, Li YX, Lin XF, et al. Research progress on the interaction mechanism between parasites and gut microbiota[J]. China Anim Husb Vet Med, 2023, 50(3): 1129-1139. (in Chinese) | | (李梦蕊, 李永霞, 林晓凤, 等. 寄生虫与肠道菌群互作机制研究进展[J]. 中国畜牧兽医, 2023, 50(3): 1129-1139.) | [4] | Buitrago G, Pickering D, Ruscher R, et al. A netrin domain-containing protein secreted by the human hookworm Necator americanus protects against CD4 T cell transfer colitis[J]. Transl Res, 2021, 232: 88-102. | [5] | Leonardi I, Gerstgrasser A, Schmidt TSB, et al. Preventive Trichuris suis ova (TSO) treatment protects immunocompetent rabbits from DSS colitis but may be detrimental under conditions of immunosuppression[J]. Sci Rep, 2017, 7(1): 16500. | [6] | Yang Y, Liu L, Liu XL, et al. Extracellular vesicles derived from Trichinella spiralis muscle larvae ameliorate TNBS-induced colitis in mice[J]. Front Immunol, 2020, 11: 1174. | [7] | Pang JD, Ding J, Zhang LX, et al. Effect of recombinant serine protease from adult stage of Trichinella spiralis on TNBS-induced experimental colitis in mice[J]. Int Immunopharmacol, 2020, 86: 106699. | [8] | Ma ZR, Li ZL, Zhang N, et al. Inhibition of GSDMD-mediated pyroptosis triggered by Trichinella spiralis intervention contributes to the alleviation of DSS-induced ulcerative colitis in mice[J]. Parasit Vectors, 2023, 16(1): 280. | [9] | Long SR, Liu RD, Kumar DV, et al. Immune protection of a helminth protein in the DSS-induced colitis model in mice[J]. Front Immunol, 2021, 12: 664998. | [10] | Hao CY, Wang W, Zhan B, et al. Trichinella spiralis paramyosin induces colonic regulatory T cells to mitigate inflammatory bowel disease[J]. Front Cell Dev Biol, 2021, 9: 695015. | [11] | Cook L, Reid KT, H?kkinen E, et al. Induction of stable human FOXP3+ Tregs by a parasite-derived TGF-β mimic[J]. Immunol Cell Biol, 2021, 99(8): 833-847. | [12] | Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 56-66. | [13] | Progatzky F, Shapiro M, Chng SH, et al. Regulation of intestinal immunity and tissue repair by enteric glia[J]. Nature, 2021, 599(7883): 125-130. | [14] | Maruszewska-Cheruiyot M, Szewczak L, Krawczak-Wójcik K, et al. The impact of intestinal inflammation on nematode’s excretory-secretory proteome[J]. Int J Mol Sci, 2023, 24(18): 14127. | [15] | Taghipour N, Mosaffa N, Aghdaei HA, et al. Immunomodulatory effect of Syphacia obvelata in treatment of experimental DSS-induced colitis in mouse model[J]. Sci Rep, 2019, 9(1): 19127. | [16] | Cobos C, Bansal PS, Wilson DT, et al. Peptides derived from hookworm anti-inflammatory proteins suppress inducible colitis in mice and inflammatory cytokine production by human cells[J]. Front Med, 2022, 9: 934852. | [17] | Xu X, Wen X, Chi Y, et al. Activation-induced T helper cell death contributes to Th1/Th2 polarization following murine Schistosoma japonicum infection[J]. J Biomed Biotechnol, 2010, 2010: 202397. | [18] | Zhou HL, Zeng XJ, Sun DC, et al. Monosexual cercariae of Schistosoma japonicum infection protects against DSS-induced colitis by shifting the Th1/Th2 balance and modulating the gut microbiota[J]. Front Microbiol, 2020, 11: 606605. | [19] | Zhu TY, Xue QK, Liu YY, et al. Analysis of intestinal microflora and metabolites from mice with DSS-induced IBD treated with Schistosoma soluble egg antigen[J]. Front Cell Dev Biol, 2021, 9: 777218. | [20] | Li L, Chen X, Wu Y, et al. Schistosoma japonicum soluble egg antigens ameliorate experimental colitis in murine model[J]. Acta Univ Med Anhui, 2018, 53(10): 1556-1561. (in Chinese) | | (李路, 陈熙, 武艺, 等. 日本血吸虫虫卵可溶性抗原抑制TNBS小鼠结肠炎的实验研究[J]. 安徽医科大学学报, 2018, 53(10): 1556-1561.) | [21] | Zhang LC, Wu XY, Yang RB, et al. Recombinant protein Schistosoma japonicum-derived molecule attenuates dextran sulfate sodium-induced colitis by inhibiting miRNA-217-5p to alleviate apoptosis[J]. World J Gastroenterol, 2021, 27(46): 7982-7994. | [22] | Xie XY, Wu ZS, Wu YH, et al. Cysteine protease of Clonorchis sinensis alleviates DSS-induced colitis in mice[J]. PLoS Negl Trop Dis, 2022, 16(9): e0010774. | [23] | Lee MR, Jeong YI, Kim HJ, et al. Metagonimus miyatai ameliorates dextran sodium sulfate-induced colitis in mice[J]. Parasitol Int, 2020, 74: 101924. | [24] | Roig J, Saiz ML, Galiano A, et al. Extracellular vesicles from the helminth Fasciola hepatica prevent DSS-induced acute ulcerative colitis in a T-lymphocyte independent mode[J]. Front Microbiol, 2018, 9: 1036. | [25] | Li XR, Yan HB, Li L, et al. Advances in genomics research on tapeworms[J]. Chin J Zoonoses, 2021, 37(2): 152-158. (in Chinese) | | (李秀荣, 闫鸿斌, 李立, 等. 绦虫基因组学研究进展[J]. 中国人兽共患病学报, 2021, 37(2): 152-158.) | [26] | Xilizati KLX, Wang CS, Wang JL, et al. Bioinformatics analysis of the sensitization mechanisms and molecular targets of Echinococcus granulosus[J]. Chin J Parasitol Parasit Dis, 2022, 40(3): 319-323. (in Chinese) | | (西力扎提?库来西, 王春生, 王佳玲, 等. 细粒棘球蚴致敏反应机制和分子靶标的生物信息学分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 319-323.) | [27] | Khelifi L, Soufli I, Labsi M, et al. Immune-protective effect of echinococcosis on colitis experimental model is dependent of down regulation of TNF-α and NO production[J]. Acta Trop, 2017, 166: 7-15. | [28] | Bao JL, Qi WJ, Sun C, et al. Echinococcus granulosus sensu stricto and antigen B may decrease inflammatory bowel disease through regulation of M1/2 polarization[J]. Parasit Vectors, 2022, 15(1): 391. | [29] | Weinstock JV, Elliott DE. Helminth infections decrease host susceptibility to immune-mediated diseases[J]. J Immunol, 2014, 193(7): 3239-3247. | [30] | Reyes JL, Lopes F, Leung G, et al. Macrophages treated with antigen from the tapeworm Hymenolepis diminuta condition CD25+ T cells to suppress colitis[J]. FASEB J, 2019, 33(4): 5676-5689. | [31] | Arai T, Lopes F, Shute A, et al. Young mice expel the tapeworm Hymenolepis diminuta and are protected from colitis by triggering a memory response with worm antigen[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 314(4): G461-G470. | [32] | Liu B, Wang Q, He YJ, et al. Research progress on immune regulation of medical protozoa-related proteins[J]. Chin J Parasitol Parasit Dis, 2021, 39(1): 112-119. (in Chinese) | | (刘冰, 王奇, 贺拥军, 等. 医学原虫相关蛋白的免疫调节作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 112-119.) | [33] | Kim HJ, Lee YJ, Back SO, et al. Treatment with extracellular vesicles from Giardia lamblia alleviates dextran sulfate sodium-induced colitis in C57BL/6 mice[J]. Korean J Parasitol, 2022, 60(5): 309-315. | [34] | Xing XP. The research on alleviation of LPS-induced intestinal inflammation by treatment with Giardia duodenalis in intestinal epithelial cells[D]. Harbin:Northeast Agricultural University, 2021: Ⅰ- Ⅱ. (in Chinese) | | (邢熙萍. 十二指肠贾第虫对LPS诱导肠上皮细胞炎症缓解作用的研究[D]. 哈尔滨: 东北农业大学, 2021: Ⅰ- Ⅱ.) | [35] | Deng L, Wojciech L, Png CW, et al. Colonization with two different Blastocystis subtypes in DSS-induced colitis mice is associated with strikingly different microbiome and pathological features[J]. Theranostics, 2023, 13(3): 1165-1179. | [36] | Billy V, Lhotská Z, Jirk? M, et al. Blastocystis colonization alters the gut microbiome and, in some cases, promotes faster recovery from induced colitis[J]. Front Microbiol, 2021, 12: 641483. | [37] | Xu YW, Xing RX, Zhang WH, et al. Toxoplasma ROP16Ⅰ/Ⅲameliorated inflammatory bowel diseases via inducing M2 phenotype of macrophages[J]. World J Gastroenterol, 2019, 25(45): 6634-6652. | [38] | Chen YY, Wang XT, Dai Y, et al. Progress on the intervention of inflammatory conditions by helminthes and their derived molecules[J]. Chin J Parasitol Parasit Dis, 2021, 39(3): 380-385. (in Chinese) | | (陈玉莹, 王晓婷, 戴洋, 等. 蠕虫及其来源分子干预炎症性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 380-385.) | [39] | Summers RW, Elliott DE, Qadir K, et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease[J]. Am J Gastroenterol, 2003, 98(9): 2034-2041. | [40] | Summers RW, Elliott DE, Urban JF Jr, et al. Trichuris suis therapy in Crohn’s disease[J]. Gut, 2005, 54(1): 87-90. | [41] | Summers RW, Elliott DE, Urban JF Jr, et al. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial[J]. Gastroenterology, 2005, 128(4): 825-832. | [42] | Sch?lmerich J, Fellermann K, Seibold FW, et al. A randomised, double-blind, placebo-controlled trial of Trichuris suis ova in active Crohn’s disease[J]. J Crohns Colitis, 2017, 11(4): 390-399. | [43] | Capron M, Béghin L, Leclercq C, et al. Safety of P28GST, a protein derived from a schistosome helminth parasite, in patients with Crohn’s disease: a pilot study (ACROHNEM)[J]. J Clin Med, 2019, 9(1): 41. | [44] | Strachan DP. Hay fever, hygiene, and household size[J]. BMJ, 1989, 299(6710): 1259-1260. |
|