中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (1): 98-102.doi: 10.12140/j.issn.1000-7423.2023.01.015
收稿日期:
2022-05-18
修回日期:
2022-06-24
出版日期:
2023-02-28
发布日期:
2023-02-22
通讯作者:
* 胡媛(1976-),女,博士,研究员,从事寄生虫疫苗的研制。E-mail:: 作者简介:
吴晓莹(1996-),女,硕士研究生,从事寄生虫感染与免疫研究。E-mail: 2369528046@qq.com
基金资助:
WU Xiaoying(), HU Yuan*(
), CAO Jianping
Received:
2022-05-18
Revised:
2022-06-24
Online:
2023-02-28
Published:
2023-02-22
Contact:
* E-mail: Supported by:
摘要:
寄生虫病不仅严重威胁人类健康,而且也给畜牧业造成巨大经济损失。目前研制安全有效的疫苗是寄生虫病预防控制的策略之一。表位疫苗具有特异性高、安全性好、设计灵活、易于生产和储存等优点,可同时诱导机体体液免疫和细胞免疫。近年来寄生虫病表位疫苗研究取得了较大进展,本文对寄生虫病表位设计及相关疫苗研究进展进行综述,旨在为高效疫苗的研制提供参考。
中图分类号:
吴晓莹, 胡媛, 曹建平. 寄生虫病表位疫苗研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 98-102.
WU Xiaoying, HU Yuan, CAO Jianping. Advances in parasite epitope vaccine research[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(1): 98-102.
[1] | Yin HQ. Experimental study on the vaccine of Toxoplasma gondii encoding GRA10 epitopes combined with chitosan microsphere[D]. Jinan: Shandong University, 2016: 6-9. (in Chinese) |
(尹绘权. 弓形虫GRA10复合表位壳聚糖微球疫苗的实验研究[D]. 济南: 山东大学, 2016: 6-9.) | |
[2] | Zhang HS, Ma YY, Xie SC, et al. Research progress in attenuated vaccines against Toxoplasma gondii[J]. Chin J Zoonoses, 2021, 37(5): 450-454. (in Chinese) |
(张海生, 马元元, 谢世臣, 等. 弓形虫弱毒疫苗的研究进展[J]. 中国人兽共患病学报, 2021, 37(5): 450-454.) | |
[3] | Bai B, Sang XY, Zhou YP, et al. Research advance on Toxoplasma gondii vaccine[J]. Chin J Zoonoses, 2017, 33(12): 1120-1124. (in Chinese) |
(白冰, 桑晓宇, 周雅盼, 等. 弓形虫疫苗研究进展[J]. 中国人兽共患病学报, 2017, 33(12): 1120-1124.) | |
[4] | Wang N, Zhao PP, Zhang YY, et al. Research progress on DNA vaccine against animal parasite[J]. Chin Anim Husb & Vet Med, 2021, 48(3): 1034-1045. (in Chinese) |
(王宁, 赵鹏鹏, 张艳艳, 等. 寄生虫DNA疫苗研究进展[J]. 中国畜牧兽医, 2021, 48(3): 1034-1045.) | |
[5] |
De Brito RCF, Cardoso J, Reis LES, et al. Peptide vaccines for leishmaniasis[J]. Front Immunol, 2018, 9: 1043.
doi: 10.3389/fimmu.2018.01043 pmid: 29868006 |
[6] |
Parvizpour S, Pourseif MM, Razmara J, et al. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches[J]. Drug Discov Today, 2020, 25(6): 1034-1042.
doi: S1359-6446(20)30113-6 pmid: 32205198 |
[7] |
Dorigatti E, Schubert B. Graph-theoretical formulation of the generalized epitope-based vaccine design problem[J]. PLoS Comput Biol, 2020, 16(10): e1008237.
doi: 10.1371/journal.pcbi.1008237 |
[8] | MacRaild CA, Seow J, Das SC, et al. Disordered epitopes as peptide vaccines[J]. Pept Sci (Hoboken), 2018, 110(3): e24067. |
[9] | Zhang C, Li M. Research progress of epitope vaccine design based on immunoinformatics[J]. J Sci Teach Coll Univ, 2021, 41(7): 33-36, 47. (in Chinese) |
(张驰, 黎明. 基于免疫信息学的表位疫苗设计研究进展[J]. 高师理科学刊, 2021, 41(7): 33-36, 47.) | |
[10] |
Sidney J, Peters B, Sette A. Epitope prediction and identification-adaptive T cell responses in humans[J]. Semin Immunol, 2020, 50: 101418.
doi: 10.1016/j.smim.2020.101418 |
[11] |
Peters B, Nielsen M, Sette A. T cell epitope predictions[J]. Annu Rev Immunol, 2020, 38: 123-145.
doi: 10.1146/annurev-immunol-082119-124838 pmid: 32045313 |
[12] |
Forouharmehr A. Engineering an efficient poly-epitope vaccine against Toxoplasma gondii infection: a computational vaccinology study[J]. Microb Pathog, 2021, 152: 104646.
doi: 10.1016/j.micpath.2020.104646 |
[13] |
Zawawi A, Forman R, Smith H, et al. In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection[J]. PLoS Pathog, 2020, 16(3): e1008243.
doi: 10.1371/journal.ppat.1008243 |
[14] |
Galanis KA, Nastou KC, Papandreou NC, et al. Linear B-cell epitope prediction for in silico vaccine design: a performance review of methods available via command-line interface[J]. Int J Mol Sci, 2021, 22(6): 3210.
doi: 10.3390/ijms22063210 |
[15] |
Fleri W, Paul S, Dhanda SK, et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design[J]. Front Immunol, 2017, 8: 278.
doi: 10.3389/fimmu.2017.00278 pmid: 28352270 |
[16] |
Li BQ, Zheng LL, Feng KY, et al. Prediction of linear B-cell epitopes with mRMR feature selection and analysis[J]. Curr Bioinform, 2016, 11: 22-31.
doi: 10.2174/1574893611666151119215131 |
[17] |
Parvizpour S, Pourseif MM, Razmara J, et al. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches[J]. Drug Discov Today, 2020, 25(6): 1034-1042.
doi: S1359-6446(20)30113-6 pmid: 32205198 |
[18] |
Majidiani H, Dalimi A, Ghaffarifar F, et al. Computational probing of Toxoplasma gondii major surface antigen 1 (SAG1) for enhanced vaccine design against toxoplasmosis[J]. Microb Pathog, 2020, 147: 104386.
doi: 10.1016/j.micpath.2020.104386 |
[19] | Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods for T- and B-cell epitope prediction[J]. J Immunol Res, 2017, 2017: 2680160. |
[20] |
Yepes-Pérez Y, López C, Suárez CF, et al. Plasmodium vivax Pv12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity[J]. PLoS One, 2018, 13(9): e0203715.
doi: 10.1371/journal.pone.0203715 |
[21] |
Pourseif MM, Moghaddam G, Daghighkia H, et al. A novel B- and helper T-cell epitopes-based prophylactic vaccine against Echinococcus granulosus[J]. Bioimpacts, 2018, 8(1): 39-52.
doi: 10.15171/bi.2018.06 |
[22] | Guo HL, Yang YD, Xue FY, et al. Effect of flexible linker length on the activity of fusion protein 4-coumaroyl-CoA ligase: stilbene synthase[J]. Mol Bio Syst, 2017, 13(3): 598-606. |
[23] |
Aldakheel FM, Abrar A, Munir S, et al. Proteome-wide mapping and reverse vaccinology approaches to design a multi-epitope vaccine against Clostridium perfringens[J]. Vaccines, 2021, 9(10): 1079.
doi: 10.3390/vaccines9101079 |
[24] | Arai R. Design of helical linkers for fusion proteins and protein-based nanostructures[J]. Methods Enzymol, 2021, 647: 209-230. |
[25] |
Li G, Huang ZL, Zhang C, et al. Construction of a linker library with widely controllable flexibility for fusion protein design[J]. Appl Microbiol Biotechnol, 2016, 100(1): 215-225.
doi: 10.1007/s00253-015-6985-3 pmid: 26394862 |
[26] |
Chen BZ, Yu L, Li ZB. Characterization of complexes made of polylysine-polyleucine-polylysine and pDNA[J]. J Mater Chem B, 2017, 5(21): 3842-3851.
doi: 10.1039/c6tb03293a pmid: 32264246 |
[27] |
Rahmani A, Baee M, Rostamtabar M, et al. Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches[J]. Int J Biol Macromol, 2019, 141: 125-136.
doi: 10.1016/j.ijbiomac.2019.08.259 |
[28] |
Ayoub R, Lee Y. Protein structure search to support the development of protein structure prediction methods[J]. Proteins, 2021, 89(6): 648-658.
doi: 10.1002/prot.v89.6 |
[29] |
Deng H, Jia Y, Zhang Y. Protein structure prediction[J]. Int J Mod Phys B, 2018, 32(18): 1840009.
doi: 10.1142/S021797921840009X |
[30] |
Pearce R, Zhang Y. Toward the solution of the protein structure prediction problem[J]. J Biol Chem, 2021, 297(1): 100870.
doi: 10.1016/j.jbc.2021.100870 |
[31] |
Rehman A, Ahmad S, Shahid F, et al. Integrated core proteomics, subtractive proteomics, and immunoinformatics investigation to unveil a potential multi-epitope vaccine against schistosomiasis[J]. Vaccines, 2021, 9(6): 658.
doi: 10.3390/vaccines9060658 |
[32] |
Dodangeh S, Fasihi-Ramandi M, Daryani A, et al. Protective efficacy by a novel multi-epitope vaccine, including MIC3, ROP8, and SAG1, against acute Toxoplasma gondii infection in BALB/c mice[J]. Microb Pathog, 2021, 153: 104764.
doi: 10.1016/j.micpath.2021.104764 |
[33] |
Hou N, Jiang N, Ma Y, et al. Low-complexity repetitive epitopes of Plasmodium falciparum are decoys for humoural immune responses[J]. Front Immunol, 2020, 11: 610.
doi: 10.3389/fimmu.2020.00610 |
[34] |
Tripp RA. Advances in vaccine development[J]. Vaccines, 2021, 9(9): 1036.
doi: 10.3390/vaccines9091036 |
[35] |
Agallou M, Margaroni M, Kotsakis SD, et al. A canine-directed chimeric multi-epitope vaccine induced protective immune responses in BALB/c mice infected with Leishmania infantum[J]. Vaccines, 2020, 8(3): 350.
doi: 10.3390/vaccines8030350 |
[36] | Pang MQ. Prediction and identification of epitopes in the Emy162 and TSP3 antigen of Echinococcus multilocularis [D]. Xining: Qinghai University, 2016: 1-3. (in Chinese) |
(庞明泉. 多房棘球蚴抗原蛋白Emy162及TSP3的抗原表位的预测及鉴定[D]. 西宁: 青海大学, 2016: 1-3.) | |
[37] | Lan X, Zhao H, Ding JB, et al. Advances in the study of vaccines against parasitic diseases[J]. J Pathog Biol, 2014, 9(11): 1059-1061. (in Chinese) |
(兰希, 赵慧, 丁剑冰, 等. 寄生虫病疫苗研究新进展[J]. 中国病原生物学杂志, 2014, 9(11): 1059-1061.) | |
[38] | Cao H. Construction of a chimeric Neisseria meningitides epitopes vaccine combined with hepatitis B virus core protein and evaluation of its immune effects[D]. Hengyang: University of South China, 2020: 37-41. (in Chinese) |
(曹惠. 以乙肝病毒核心蛋白为载体的脑膜炎奈瑟菌表位疫苗的构建及其免疫效果研究[D]. 衡阳: 南华大学, 2020: 37-41.) | |
[39] |
Şahar EA, Can H, İz SG, et al. Development of a hexavalent recombinant protein vaccine adjuvanted with Montanide ISA 50 V and determination of its protective efficacy against acute toxoplasmosis[J]. BMC Infect Dis, 2020, 20(1): 493.
doi: 10.1186/s12879-020-05220-2 |
[40] | Khalid H, Robaiza Z, Rapeah S, et al. Immunogenicity of multiepitope vaccine candidate against Toxoplasma gondii infection in BALB/c mice[J]. Iran J Parasitol, 2018, 13(2): 215-224. |
[41] |
Zhang FB, Li SY, Zhu YJ, et al. Immunization of mice with egG1Y162-1/2 provides protection against Echinococcus granulosus infection in BALB/c mice[J]. Mol Immunol, 2018, 94: 183-189.
doi: 10.1016/j.molimm.2018.01.002 |
[42] |
Yao MX, Sun XD, Gao YH, et al. Multi-epitope chimeric antigen used as a serological marker to estimate Plasmodium falciparum transmission intensity in the border area of China-Myanmar[J]. Infect Dis Poverty, 2016, 5: 98.
doi: 10.1186/s40249-016-0194-x |
[43] | Yang LX, Deng WW, Gao YH, et al. Effect of nanoemulsion as an adjuvant on immunogenicity of M.RCAg-1, a multi-epitope protein against Plasmodium falciparum[J]. Acta Parasitol Med Entomol Sin, 2017, 24(2): 65-69. (in Chinese) |
(杨丽雪, 邓唯唯, 高宇辉, 等. 恶性疟疾疫苗M.RCAg-1与候选佐剂纳米乳配伍的免疫原性研究[J]. 寄生虫与医学昆虫学报, 2017, 24(2): 65-69.) | |
[44] |
Guo JJ, Sun XH, Yin HQ, et al. Chitosan microsphere used as an effective system to deliver a linked antigenic peptides vaccine protect mice against acute and chronic toxoplasmosis[J]. Front Cell Infect Microbiol, 2018, 8: 163.
doi: 10.3389/fcimb.2018.00163 |
[45] |
Li YJ, Zhu YJ, Sha T, et al. A multi-epitope chitosan nanoparticles vaccine of Canine against Echinococcus granulosus[J]. J Biomed Nanotechnol, 2021, 17(5): 910-920.
doi: 10.1166/jbn.2021.3065 |
[46] |
Lage DP, Ribeiro PAF, Dias DS, et al. Liposomal formulation of Chimera T, a multiple T-cell epitope-containing recombinant protein, is a candidate vaccine for human visceral leishmaniasis[J]. Vaccines, 2020, 8(2): 289.
doi: 10.3390/vaccines8020289 |
[47] | Liu F. Evaluation of immune efficacy on multi-epitope DNA vaccines against infectious bronchitis virus in chicken[D]. Hefei: Anhui Agricultural University, 2015: 7-10. (in Chinese) |
(刘芳. 鸡传染性支气管炎病毒多表位核酸疫苗免疫效力研究[D]. 合肥: 安徽农业大学, 2015: 7-10.) | |
[48] |
Khodadadi M, Ghaffarifar F, Dalimi A, et al. Immunogenicity of in silico designed multi-epitope DNA vaccine encoding SAG1, SAG3 and SAG5 of Toxoplasma gondii adjuvanted with CpG-ODN against acute toxoplasmosis in BALB/c mice[J]. Acta Trop, 2021, 216: 105836.
doi: 10.1016/j.actatropica.2021.105836 |
[49] |
Lu G, Wang L, Zhou AH, et al. Epitope analysis, expression and protection of SAG5A vaccine against Toxoplasma gondii [J]. Acta Trop, 2015, 146: 66-72.
doi: 10.1016/j.actatropica.2015.03.013 |
[50] |
Foroutan M, Barati M, Ghaffarifar F. Enhancing immune responses by a novel multi-epitope ROP8 DNA vaccine plus interleukin-12 plasmid as a genetic adjuvant against acute Toxoplasma gondii infection in BALB/c mice[J]. Microb Pathog, 2020, 147: 104435.
doi: 10.1016/j.micpath.2020.104435 |
[51] |
de Melo TT, Mendes MM, Alves CC, et al. The Schistosoma mansoni cyclophilin A epitope 107-121 induces a protective immune response against schistosomiasis[J]. Mol Immunol, 2019, 111: 172-181.
doi: 10.1016/j.molimm.2019.04.021 |
[52] |
Chauhan S, Kumar R, Khan N, et al. Designing peptide-based vaccine candidates for Plasmodium falciparum erythrocyte binding antigen 175[J]. Biologicals, 2020, 67: 42-48.
doi: 10.1016/j.biologicals.2020.07.002 pmid: 32718776 |
[1] | 李小丽, 栗绍刚, 吴赵永. 双叶槽绦虫肠道感染患者的临床表现特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 459-463. |
[2] | 谢宜, 王莹, 王旭, 施丹丹, 付梅花, 李春阳, 伍卫平, 丹巴泽里, 廖沙, 张凯歌, 邓雪莹, 官亚宜. 基于高通量测序的家犬粪便寄生虫病原调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 325-330. |
[3] | 盛慧锋, 周晓农, 余森海, 汤林华, 冯正, 李石柱, 薛纯良, 吴观陵, 余新炳, 温廷桓, 程训佳, 潘卫庆, 胡薇, 苏川, 汪天平, 吴忠道, 陈勤, 张争艳, 戴菁, 李菂, 刘雨舟, 曹建平. 《中国寄生虫学与寄生虫病杂志》创刊40年发展历程[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 1-9. |
[4] | 乜茹, 李文登, 冶赓博, 尹凤娇, 庞明泉, 王志鑫, 樊海宁. 细胞焦亡在人体寄生虫病中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 780-785. |
[5] | 谭百宏, 王艳玲, 郑敬彤. 人体寄生虫学教学新时代的挑战和发展方向[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 635-641. |
[6] | 李润花, 殷国荣. 刚地弓形虫病多表位疫苗的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 661-667. |
[7] | 丁昕, 金小林, 茅范贞, 张强, 徐祥珍, 戴洋, 曹俊. 2016—2020年江苏省农村地区无害化卫生户厕改造效果评估[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 794-797. |
[8] | 邓积广, 余水兰, 农智, 蒋智华. 2016—2019年广西百色市人体重点寄生虫病监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 342-346. |
[9] | 朱慧慧, 诸廷俊, 陈颖丹, 邓卓晖, 许静, 周长海, 钱门宝, 秦志强, 黄继磊, 吕超, 张米禛, 李石柱. 新型冠状病毒肺炎疫情对重点寄生虫病防控工作的影响[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 365-369. |
[10] | 钱门宝, 陈颖丹, 朱慧慧, 刘亨辉, 周长海, 诸廷俊, 许隆祺, 李石柱, 周晓农. 2014—2015年全国人体重点寄生虫病现状调查的抽样设计及解读[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 88-92. |
[11] | 公衍峰, 郑金鑫, 胡小康, 夏尚, 李石柱. 空间流行病学在寄生虫病传播风险研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 101-106. |
[12] | 曹园园, 朱国鼎, 刘耀宝, 戴洋, 李伟, 王玠, 周华云, 王伟明, 王依, 杨坤, 曹俊, 羊海涛. 2018年江苏省寄生虫病防治技能竞赛成绩分析[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 731-736. |
[13] | 葛军, 陈颖丹, 曾小军, 李石柱, 刘亦文. 基于“协作创新”模式的江西省重点寄生虫病综合防治示范区创建的初步成效[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 529-532. |
[14] | 衣凤芸, 张争艳, 陈勤, 杨帆, 盛慧锋. 《中国寄生虫学与寄生虫病杂志》2008-2018年出版时滞分析[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(4): 473-476. |
[15] | 陈蔡松, 张耀刚, 王志鑫, 樊海宁. Nod样受体蛋白3炎症小体在寄生虫病中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(3): 390-394. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||