[1] | Yin HQ. Experimental study on the vaccine of Toxoplasma gondii encoding GRA10 epitopes combined with chitosan microsphere[D]. Jinan: Shandong University, 2016: 6-9. (in Chinese) | | (尹绘权. 弓形虫GRA10复合表位壳聚糖微球疫苗的实验研究[D]. 济南: 山东大学, 2016: 6-9.) | [2] | Zhang HS, Ma YY, Xie SC, et al. Research progress in attenuated vaccines against Toxoplasma gondii[J]. Chin J Zoonoses, 2021, 37(5): 450-454. (in Chinese) | | (张海生, 马元元, 谢世臣, 等. 弓形虫弱毒疫苗的研究进展[J]. 中国人兽共患病学报, 2021, 37(5): 450-454.) | [3] | Bai B, Sang XY, Zhou YP, et al. Research advance on Toxoplasma gondii vaccine[J]. Chin J Zoonoses, 2017, 33(12): 1120-1124. (in Chinese) | | (白冰, 桑晓宇, 周雅盼, 等. 弓形虫疫苗研究进展[J]. 中国人兽共患病学报, 2017, 33(12): 1120-1124.) | [4] | Wang N, Zhao PP, Zhang YY, et al. Research progress on DNA vaccine against animal parasite[J]. Chin Anim Husb & Vet Med, 2021, 48(3): 1034-1045. (in Chinese) | | (王宁, 赵鹏鹏, 张艳艳, 等. 寄生虫DNA疫苗研究进展[J]. 中国畜牧兽医, 2021, 48(3): 1034-1045.) | [5] | De Brito RCF, Cardoso J, Reis LES, et al. Peptide vaccines for leishmaniasis[J]. Front Immunol, 2018, 9: 1043. | [6] | Parvizpour S, Pourseif MM, Razmara J, et al. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches[J]. Drug Discov Today, 2020, 25(6): 1034-1042. | [7] | Dorigatti E, Schubert B. Graph-theoretical formulation of the generalized epitope-based vaccine design problem[J]. PLoS Comput Biol, 2020, 16(10): e1008237. | [8] | MacRaild CA, Seow J, Das SC, et al. Disordered epitopes as peptide vaccines[J]. Pept Sci (Hoboken), 2018, 110(3): e24067. | [9] | Zhang C, Li M. Research progress of epitope vaccine design based on immunoinformatics[J]. J Sci Teach Coll Univ, 2021, 41(7): 33-36, 47. (in Chinese) | | (张驰, 黎明. 基于免疫信息学的表位疫苗设计研究进展[J]. 高师理科学刊, 2021, 41(7): 33-36, 47.) | [10] | Sidney J, Peters B, Sette A. Epitope prediction and identification-adaptive T cell responses in humans[J]. Semin Immunol, 2020, 50: 101418. | [11] | Peters B, Nielsen M, Sette A. T cell epitope predictions[J]. Annu Rev Immunol, 2020, 38: 123-145. | [12] | Forouharmehr A. Engineering an efficient poly-epitope vaccine against Toxoplasma gondii infection: a computational vaccinology study[J]. Microb Pathog, 2021, 152: 104646. | [13] | Zawawi A, Forman R, Smith H, et al. In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection[J]. PLoS Pathog, 2020, 16(3): e1008243. | [14] | Galanis KA, Nastou KC, Papandreou NC, et al. Linear B-cell epitope prediction for in silico vaccine design: a performance review of methods available via command-line interface[J]. Int J Mol Sci, 2021, 22(6): 3210. | [15] | Fleri W, Paul S, Dhanda SK, et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design[J]. Front Immunol, 2017, 8: 278. | [16] | Li BQ, Zheng LL, Feng KY, et al. Prediction of linear B-cell epitopes with mRMR feature selection and analysis[J]. Curr Bioinform, 2016, 11: 22-31. | [17] | Parvizpour S, Pourseif MM, Razmara J, et al. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches[J]. Drug Discov Today, 2020, 25(6): 1034-1042. | [18] | Majidiani H, Dalimi A, Ghaffarifar F, et al. Computational probing of Toxoplasma gondii major surface antigen 1 (SAG1) for enhanced vaccine design against toxoplasmosis[J]. Microb Pathog, 2020, 147: 104386. | [19] | Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods for T- and B-cell epitope prediction[J]. J Immunol Res, 2017, 2017: 2680160. | [20] | Yepes-Pérez Y, López C, Suárez CF, et al. Plasmodium vivax Pv12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity[J]. PLoS One, 2018, 13(9): e0203715. | [21] | Pourseif MM, Moghaddam G, Daghighkia H, et al. A novel B- and helper T-cell epitopes-based prophylactic vaccine against Echinococcus granulosus[J]. Bioimpacts, 2018, 8(1): 39-52. | [22] | Guo HL, Yang YD, Xue FY, et al. Effect of flexible linker length on the activity of fusion protein 4-coumaroyl-CoA ligase: stilbene synthase[J]. Mol Bio Syst, 2017, 13(3): 598-606. | [23] | Aldakheel FM, Abrar A, Munir S, et al. Proteome-wide mapping and reverse vaccinology approaches to design a multi-epitope vaccine against Clostridium perfringens[J]. Vaccines, 2021, 9(10): 1079. | [24] | Arai R. Design of helical linkers for fusion proteins and protein-based nanostructures[J]. Methods Enzymol, 2021, 647: 209-230. | [25] | Li G, Huang ZL, Zhang C, et al. Construction of a linker library with widely controllable flexibility for fusion protein design[J]. Appl Microbiol Biotechnol, 2016, 100(1): 215-225. | [26] | Chen BZ, Yu L, Li ZB. Characterization of complexes made of polylysine-polyleucine-polylysine and pDNA[J]. J Mater Chem B, 2017, 5(21): 3842-3851. | [27] | Rahmani A, Baee M, Rostamtabar M, et al. Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches[J]. Int J Biol Macromol, 2019, 141: 125-136. | [28] | Ayoub R, Lee Y. Protein structure search to support the development of protein structure prediction methods[J]. Proteins, 2021, 89(6): 648-658. | [29] | Deng H, Jia Y, Zhang Y. Protein structure prediction[J]. Int J Mod Phys B, 2018, 32(18): 1840009. | [30] | Pearce R, Zhang Y. Toward the solution of the protein structure prediction problem[J]. J Biol Chem, 2021, 297(1): 100870. | [31] | Rehman A, Ahmad S, Shahid F, et al. Integrated core proteomics, subtractive proteomics, and immunoinformatics investigation to unveil a potential multi-epitope vaccine against schistosomiasis[J]. Vaccines, 2021, 9(6): 658. | [32] | Dodangeh S, Fasihi-Ramandi M, Daryani A, et al. Protective efficacy by a novel multi-epitope vaccine, including MIC3, ROP8, and SAG1, against acute Toxoplasma gondii infection in BALB/c mice[J]. Microb Pathog, 2021, 153: 104764. | [33] | Hou N, Jiang N, Ma Y, et al. Low-complexity repetitive epitopes of Plasmodium falciparum are decoys for humoural immune responses[J]. Front Immunol, 2020, 11: 610. | [34] | Tripp RA. Advances in vaccine development[J]. Vaccines, 2021, 9(9): 1036. | [35] | Agallou M, Margaroni M, Kotsakis SD, et al. A canine-directed chimeric multi-epitope vaccine induced protective immune responses in BALB/c mice infected with Leishmania infantum[J]. Vaccines, 2020, 8(3): 350. | [36] | Pang MQ. Prediction and identification of epitopes in the Emy162 and TSP3 antigen of Echinococcus multilocularis [D]. Xining: Qinghai University, 2016: 1-3. (in Chinese) | | (庞明泉. 多房棘球蚴抗原蛋白Emy162及TSP3的抗原表位的预测及鉴定[D]. 西宁: 青海大学, 2016: 1-3.) | [37] | Lan X, Zhao H, Ding JB, et al. Advances in the study of vaccines against parasitic diseases[J]. J Pathog Biol, 2014, 9(11): 1059-1061. (in Chinese) | | (兰希, 赵慧, 丁剑冰, 等. 寄生虫病疫苗研究新进展[J]. 中国病原生物学杂志, 2014, 9(11): 1059-1061.) | [38] | Cao H. Construction of a chimeric Neisseria meningitides epitopes vaccine combined with hepatitis B virus core protein and evaluation of its immune effects[D]. Hengyang: University of South China, 2020: 37-41. (in Chinese) | | (曹惠. 以乙肝病毒核心蛋白为载体的脑膜炎奈瑟菌表位疫苗的构建及其免疫效果研究[D]. 衡阳: 南华大学, 2020: 37-41.) | [39] | ?ahar EA, Can H, ?z SG, et al. Development of a hexavalent recombinant protein vaccine adjuvanted with Montanide ISA 50 V and determination of its protective efficacy against acute toxoplasmosis[J]. BMC Infect Dis, 2020, 20(1): 493. | [40] | Khalid H, Robaiza Z, Rapeah S, et al. Immunogenicity of multiepitope vaccine candidate against Toxoplasma gondii infection in BALB/c mice[J]. Iran J Parasitol, 2018, 13(2): 215-224. | [41] | Zhang FB, Li SY, Zhu YJ, et al. Immunization of mice with egG1Y162-1/2 provides protection against Echinococcus granulosus infection in BALB/c mice[J]. Mol Immunol, 2018, 94: 183-189. | [42] | Yao MX, Sun XD, Gao YH, et al. Multi-epitope chimeric antigen used as a serological marker to estimate Plasmodium falciparum transmission intensity in the border area of China-Myanmar[J]. Infect Dis Poverty, 2016, 5: 98. | [43] | Yang LX, Deng WW, Gao YH, et al. Effect of nanoemulsion as an adjuvant on immunogenicity of M.RCAg-1, a multi-epitope protein against Plasmodium falciparum[J]. Acta Parasitol Med Entomol Sin, 2017, 24(2): 65-69. (in Chinese) | | (杨丽雪, 邓唯唯, 高宇辉, 等. 恶性疟疾疫苗M.RCAg-1与候选佐剂纳米乳配伍的免疫原性研究[J]. 寄生虫与医学昆虫学报, 2017, 24(2): 65-69.) | [44] | Guo JJ, Sun XH, Yin HQ, et al. Chitosan microsphere used as an effective system to deliver a linked antigenic peptides vaccine protect mice against acute and chronic toxoplasmosis[J]. Front Cell Infect Microbiol, 2018, 8: 163. | [45] | Li YJ, Zhu YJ, Sha T, et al. A multi-epitope chitosan nanoparticles vaccine of Canine against Echinococcus granulosus[J]. J Biomed Nanotechnol, 2021, 17(5): 910-920. | [46] | Lage DP, Ribeiro PAF, Dias DS, et al. Liposomal formulation of Chimera T, a multiple T-cell epitope-containing recombinant protein, is a candidate vaccine for human visceral leishmaniasis[J]. Vaccines, 2020, 8(2): 289. | [47] | Liu F. Evaluation of immune efficacy on multi-epitope DNA vaccines against infectious bronchitis virus in chicken[D]. Hefei: Anhui Agricultural University, 2015: 7-10. (in Chinese) | | (刘芳. 鸡传染性支气管炎病毒多表位核酸疫苗免疫效力研究[D]. 合肥: 安徽农业大学, 2015: 7-10.) | [48] | Khodadadi M, Ghaffarifar F, Dalimi A, et al. Immunogenicity of in silico designed multi-epitope DNA vaccine encoding SAG1, SAG3 and SAG5 of Toxoplasma gondii adjuvanted with CpG-ODN against acute toxoplasmosis in BALB/c mice[J]. Acta Trop, 2021, 216: 105836. | [49] | Lu G, Wang L, Zhou AH, et al. Epitope analysis, expression and protection of SAG5A vaccine against Toxoplasma gondii [J]. Acta Trop, 2015, 146: 66-72. | [50] | Foroutan M, Barati M, Ghaffarifar F. Enhancing immune responses by a novel multi-epitope ROP8 DNA vaccine plus interleukin-12 plasmid as a genetic adjuvant against acute Toxoplasma gondii infection in BALB/c mice[J]. Microb Pathog, 2020, 147: 104435. | [51] | de Melo TT, Mendes MM, Alves CC, et al. The Schistosoma mansoni cyclophilin A epitope 107-121 induces a protective immune response against schistosomiasis[J]. Mol Immunol, 2019, 111: 172-181. | [52] | Chauhan S, Kumar R, Khan N, et al. Designing peptide-based vaccine candidates for Plasmodium falciparum erythrocyte binding antigen 175[J]. Biologicals, 2020, 67: 42-48. |
|