[1] | Ashour DS, Othman AA. Parasite-bacteria interrelationship[J]. Parasitol Res, 2020, 119(10): 3145-3164. | [2] | World Health Organization. World malaria report 2023 [EB/OL](2023-11-30) [2024-02-14]. https://wwwwhoint/publications/i/item/9789240086173 | [3] | Feng J, Zhang L, Xia ZG, et al. Malaria elimination in China: an eminent milestone in the anti-malaria campaign and challenges in the post-elimination stage[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 421-428. (in Chinese) | | (丰俊, 张丽, 夏志贵, 等. 中国消除疟疾: 重要里程碑意义及消除后的挑战[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 421-428.) | [4] | Zhang L, Yi BY, Yin JH, et al. Epidemiological characteristics of malaria in China, 2022[J]. Chin J Parasitol Parasit Dis, 2023, 41(2): 137-141. (in Chinese) | | (张丽, 易博禹, 尹建海, 等. 2022年全国疟疾疫情特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 137-141.) | [5] | Moyes CL, Athinya DK, Seethaler T, et al. Evaluating insecticide resistance across African districts to aid malaria control decisions[J]. Proc Natl Acad Sci USA, 2020, 117(36): 22042-22050. | [6] | Stokes BH, Dhingra SK, Rubiano K, et al. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness[J]. Elife, 2021, 10: e66277. | [7] | Richie TL, Saul A. Progress and challenges for malaria vaccines[J]. Nature, 2002, 415(6872): 694-701. | [8] | Bettencourt P. Current challenges in the identification of pre-erythrocytic malaria vaccine candidate antigens[J]. Front Immunol, 2020, 11:190. | [9] | Wang J, Zheng WQ, Liu F, et al. Characterization of Pb51 in Plasmodium berghei as a malaria vaccine candidate targeting both asexual erythrocytic proliferation and transmission[J]. Malar J, 2017, 16(1): 458. | [10] | Alves E, Salman AM, Leoratti F, et al. Evaluation of Plasmodium vivax cell-traversal protein for ookinetes and sporozoites as a preerythrocytic P. vivax vaccine[J]. Clin Vaccine Immunol, 2017, 24(4): e00501-e00516. | [11] | Miura K, Tachibana M, Takashima E, et al. Malaria transmission-blocking vaccines: wheat germ cell-free technology can accelerate vaccine development[J]. Expert Rev Vaccines, 2019, 18(10): 1017-1027. | [12] | Tsuboi T, Tachibana M, Kaneko O, et al. Transmission-blocking vaccine of vivax malaria[J]. Parasitol Int, 2003, 52(1): 1-11. | [13] | El-Moamly AA, El-Sweify MA. Malaria vaccines: the 60-year journey of hope and final success-lessons learned and future prospects[J]. Trop Med Health, 2023, 51(1): 29. | [14] | Guttery DS, Roques M, Holder AA, et al. Commit and transmit: molecular players in Plasmodium sexual development and zygote differentiation[J]. Trends Parasitol, 2015, 31(12): 676-685. | [15] | Reece SE, Drew DR, Gardner A. Sex ratio adjustment and kin discrimination in malaria parasites[J]. Nature, 2008, 453(7195): 609-614. | [16] | Liu F, Yang F, Wang YR, et al. A conserved malaria parasite antigen Pb22 plays a critical role in male gametogenesis in Plasmodium berghei[J]. Cell Microbiol, 2021, 23(3): e13294. | [17] | Kou X, Zheng WQ, Du F, et al. Characterization of a Plasmodium berghei sexual stage antigen PbPH as a new candidate for malaria transmission-blocking vaccine[J]. Parasit Vectors, 2016, 9: 190. | [18] | Tachibana M, Ishino T, Takashima E, et al. A male gametocyte osmiophilic body and microgamete surface protein of the rodent malaria parasite Plasmodium yoelii (PyMiGS) plays a critical role in male osmiophilic body formation and exflagellation[J]. Cell Microbiol, 2018, 20(5): e12821. | [19] | Bansal GP, Weinstein CS, Kumar N. Insight into phagocytosis of mature sexual (gametocyte) stages of Plasmodium falciparum using a human monocyte cell line[J]. Acta Trop, 2016, 157: 96-101. | [20] | van Dijk MR, Janse CJ, Thompson J, et al. A central role for P48/45 in malaria parasite male gamete fertility[J]. Cell, 2001, 104(1): 153-164. | [21] | Eksi S, Czesny B, van Gemert GJ, et al. Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production[J]. Mol Microbiol, 2006, 61(4): 991-998. | [22] | Chowdhury DR, Angov E, Kariuki T, et al. A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli[J]. PLoS One, 2009, 4(7): e6352. | [23] | Arredondo SA, Kappe SHI. The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle[J]. Int J Parasitol, 2017, 47(7): 409-423. | [24] | Williamson KC, Criscio MD, Kaslow DC. Cloning and expression of the gene for Plasmodium falciparum transmission-blocking target antigen, Pfs230[J]. Mol Biochem Parasitol, 1993, 58(2): 355-358. | [25] | Molina-Cruz A, Canepa GE, Barillas-Mury C. Plasmodium P47: a key gene for malaria transmission by mosquito vectors[J]. Curr Opin Microbiol, 2017, 40: 168-174. | [26] | Templeton TJ, Keister DB, Muratova O, et al. Adherence of erythrocytes during exflagellation of Plasmodium falciparum microgametes is dependent on erythrocyte surface sialic acid and glycophorins[J]. J Exp Med, 1998, 187(10): 1599-1609. | [27] | Tao DY, Ubaida-Mohien C, Mathias DK, et al. Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology[J]. Mol Cell Proteomics, 2014, 13(10): 2705-2724. | [28] | Marin-Mogollon C, van de Vegte-Bolmer M, van Gemert GJ, et al. The Plasmodium falciparum male gametocyte protein P230p, a paralog of P230, is vital for ookinete formation and mosquito transmission[J]. Sci Rep, 2018, 8(1): 14902. | [29] | van Dijk MR, Khan SM, et al. Three members of the 6-cys protein family of Plasmodium play a role in gamete fertility[J]. PLoS Pathog, 2010, 6(4): e1000853. | [30] | van Schaijk BC, van Dijk MR, van de Vegte-Bolmer M, et al. Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum[J]. Mol Biochem Parasitol, 2006, 149(2): 216-222. | [31] | Brukman NG, Li X, Podbilewicz B. Fusexins, HAP2/GCS1 and evolution of gamete fusion[J]. Front Cell DevBiol, 2021, 9:824024. | [32] | Tentokam BCN, Amaratunga C, Alani NAH, et al. Naturally acquired antibody response to malaria transmission blocking vaccine candidate Pvs230 domain 1[J]. Front Immunol, 2019, 10: 2295. | [33] | Moskalyk LA, Oo MM, Jacobs-Lorena M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti[J]. Insect Mol Biol, 1996, 5(4): 261-268. | [34] | Li FW, Patra KP, Vinetz JM. An anti-chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito[J]. J Infect Dis, 2005, 192(5): 878-887. | [35] | Li FW, Patra KP, Yowell CA, et al. Apical surface expression of aspartic protease Plasmepsin 4, a potential transmission-blocking target of the Plasmodium ookinete[J]. J Biol Chem, 2010, 285(11): 8076-8083. | [36] | Wang PP, Jiang XF, Bai J, et al. Characterization of PSOP26 as an ookinete surface antigen with improved transmission-blocking activity when fused with PSOP25[J]. Parasit Vectors, 2022, 15(1): 175. | [37] | Saxena AK, Wu YM, Garboczi DN. Plasmodium p25 and p28 surface proteins: potential transmission-blocking vaccines[J]. Eukaryot Cell, 2007, 6(8): 1260-1265. | [38] | Tomas AM, Margos G, Dimopoulos G, et al. P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions[J]. EMBO J, 2001, 20(15): 3975-3983. | [39] | Zheng L, Xu WM, Liu YJ, et al. Transmission-blocking vaccine candidate of Plasmodium vivax Pvs25 is highly conservative among Chinese isolates[J]. Chin J Parasitol Parasit Dis, 2004, 22(1): 16-19. (in Chinese) | | (郑丽, 徐卫民, 刘英杰, 等. 间日疟原虫传播阻断疫苗候选抗原Pvs25中国分离株高度保守[J]. 中国寄生虫学与寄生虫病杂志, 2004, 22(1): 16-19.) | [40] | Zheng WQ, Kou X, Du YT, et al. Identification of three ookinete-specific genes and evaluation of their transmission-blocking potentials in Plasmodium berghei[J]. Vaccine, 2016, 34(23): 2570-2578. | [41] | Ukegbu CV, Giorgalli M, Tapanelli S, et al. PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector[J]. Proc Natl Acad Sci USA, 2020, 117(13): 7363-7373. | [42] | Tachibana M, Iriko H, Baba M, et al. PSOP1, putative secreted ookinete protein 1, is localized to the micronemes of Plasmodium yoelii and P. berghei ookinetes[J]. Parasitol Int, 2021, 84: 102407. | [43] | Coutinho-Abreu IV, Ramalho-Ortigao M. Transmission blocking vaccines to control insect-borne diseases: a review[J]. Mem Inst Oswaldo Cruz, 2010, 105(1): 1-12. | [44] | Lavazec C, Boudin C, Lacroix R, et al. Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparumtransmission-blocking vaccine[J]. Infect Immun, 2007, 75(4): 1635-1642. | [45] | Dinglasan RR, Kalume DE, Kanzok SM, et al. Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen[J]. Proc Natl Acad Sci USA, 2007, 104(33): 13461-13466. | [46] | Dinglasan RR, Jacobs-Lorena M. Flipping the paradigm on malaria transmission-blocking vaccines[J]. Trends Parasitol, 2008, 24(8): 364-370. | [47] | Lecona-Valera AN, Tao DY, Rodríguez MH, et al. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development[J]. Parasit Vectors, 2016, 9(1): 274. | [48] | Mathias DK, Plieskatt JL, Armistead JS, et al. Expression, immunogenicity, histopathology, and potency of a mosquito-based malaria transmission-blocking recombinant vaccine[J]. Infect Immun, 2012, 80(4): 1606-1614. | [49] | Armistead JS, Morlais I, Mathias DK, et al. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivaxmalaria[J]. Infect Immun, 2014, 82(2): 818-829. | [50] | Zhang GW, Niu GD, Franca CM, et al. Anopheles midgut FREP1 mediates Plasmodium invasion[J]. J Biol Chem, 2015, 290(27): 16490-16501. | [51] | Dong YM, Sim?es ML, Marois E, et al. CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection[J]. PLoS Pathog, 2018, 14(3): e1006898. | [52] | Nourani L, Mehrizi AA, Pirahmadi S, et al. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector[J]. Infect Genet Evol, 2023, 109:105419. | [53] | Cui YJ, Niu GD, Li VL, et al. Analysis of blood-induced Anopheles gambiae midgut proteins and sexual stage Plasmodium falciparum interaction reveals mosquito genes important for malaria transmission[J]. Sci Rep, 2020, 10(1): 14316. | [54] | Liu F, Li L, Zheng WQ, et al. Characterization of Plasmodium berghei Pbg37 as both a pre- and post-fertilization antigen with transmission-blocking potential[J]. Infect Immun, 2018, 86(8): e00785. | [55] | Yang F, Liu F, Yu XX, et al. Evaluation of two sexual-stage antigens as bivalent transmission-blocking vaccines in rodent malaria[J]. Parasit Vectors, 2021, 14(1): 241. | [56] | Sala KA, Nishiura H, Upton LM, et al. The Plasmodium berghei sexual stage antigen PSOP12 induces anti-malarial transmission blocking immunity both in vivo and in vitro[J]. Vaccine, 2015, 33(3): 437-445. | [57] | Kou X, Zheng WQ, Du F, et al. Erratum to: characterization of a Plasmodium berghei sexual stage antigen PbPH as a new candidate for malaria transmission-blocking vaccine[J]. Parasit Vectors, 2017, 10(1): 84. | [58] | Carter R. Transmission blocking malaria vaccines[J]. Vaccine, 2001, 19(17/18/19): 2309-2314. | [59] | Mair GR, Lasonder E, Garver LS, et al. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development[J]. PLoS Pathog, 2010, 6(2): e1000767. | [60] | Shi YP, Das P, Holloway B, et al. Development, expression, and murine testing of a multistage Plasmodium falciparum malaria vaccine candidate[J]. Vaccine, 2000, 18(25): 2902-2914. | [61] | Mizutani M, Iyori M, Blagborough AM, et al. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites[J]. Infect Immun, 2014, 82(10): 4348-4357. | [62] | Zheng L, Pang W, Qi ZM, et al. Effects of transmission-blocking vaccines simultaneously targeting pre- and post-fertilization antigens in the rodent malaria parasite Plasmodium yoelii[J]. Parasit Vectors, 2016, 9(1): 433. | [63] | Singh SK, Plieskatt J, Chourasia BK, et al. A reproducible and scalable process for manufacturing a Pfs48/45 based Plasmodium falciparum transmission-blocking vaccine[J]. Front Immunol, 2020, 11:606266. | [64] | da Veiga GTS, Moriggi MR, Vettorazzi JF, et al. Plasmodium vivax vaccine: what is the best way to go?[J]. Front Immunol, 2022, 13:910236. | [65] | Tachibana M, Sato C, Otsuki H, et al. Plasmodium vivax gametocyte protein Pvs230 is a transmission-blocking vaccine candidate[J]. Vaccine, 2012, 30(10): 1807-1812. | [66] | Mariano RMDS, Gon?alves AAM, Oliveira DS, et al. A review of major patents on potential malaria vaccine targets[J]. Pathogens, 2023, 12(2): 247. | [67] | Rui E, Fernandez-Becerra C, Takeo S, et al. Plasmodium vivax: comparison of immunogenicity among proteins expressed in the cell-free systems of Escherichia coli and wheat germ by suspension array assays[J]. Malar J, 2011, 10: 192. | [68] | Tachibana M, Miura K, Takashima E, et al. Identification of domains within Pfs230 that elicit transmission blocking antibody responses[J]. Vaccine, 2019, 37(13): 1799-1806. | [69] | Tachibana M, Suwanabun N, Kaneko O, et al. ,, Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization[J]. Vaccine, 2015, 33(16): 1901-1908. | [70] | Mamedov T, Cicek K, Miura K, et al. A Plant-produced in vivo deglycosylated full-length Pfs48/45 as a transmission-blocking vaccine candidate against malaria[J]. Sci Rep, 2019, 9(1): 9868. | [71] | Asali S, Raz A, Turki H, et al. Restricted genetic heterogeneity of the Plasmodium vivax transmission-blocking vaccine (TBV) candidate Pvs48/45 in a low transmission setting: Implications for the Plasmodium vivax malaria vaccine development[J]. Infect Genet Evol, 2021, 89: 104710. | [72] | McLeod B, Mabrouk MT, Miura K, et al. Vaccination with a structure-based stabilized version of malarial antigen Pfs48/45 elicits ultra-potent transmission-blocking antibody responses[J]. Immunity, 2022, 55(9): 1680-1692.e8. | [73] | Blagborough AM, Musiychuk K, Bi H, et al. Transmission blocking potency and immunogenicity of a plant-produced Pvs25-based subunit vaccine against Plasmodium vivax[J]. Vaccine, 2016, 34(28): 3252-3259. | [74] | Malkin EM, Durbin AP, Diemert DJ, et al. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria[J]. Vaccine, 2005, 23(24): 3131-3138. | [75] | Sagara I, Healy SA, Assadou MH, et al. Safety and immunogenicity of Pfs25H-EPA/Alhydrogel, a transmission-blocking vaccine against Plasmodium falciparum: a randomised, double-blind, comparator-controlled, dose-escalation study in healthy Malian adults[J]. Lancet Infect Dis, 2018, 18(9): 969-982. | [76] | Chichester JA, Green BJ, Jones RM, et al. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: a phase 1 dose-escalation study in healthy adults[J]. Vaccine, 2018, 36(39): 5865-5871. | [77] | Wu YM, Ellis RD, Shaffer D, et al. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51[J]. PLoS One, 2008, 3(7): e2636. | [78] | Patra KP, Li FW, Carter D, et al. Alga-produced malaria transmission-blocking vaccine candidate Pfs25 formulated with a human use-compatible potent adjuvant induces high-affinity antibodies that block Plasmodium falciparum infection of mosquitoes[J]. Infect Immun, 2015, 83(5): 1799-1808. | [79] | Yu SS, Wang J, Luo X, et al. Transmission-blocking strategies against malaria parasites during their mosquito stages[J]. Front Cell Infect Microbiol, 2022, 12:820650. | [80] | Ayala D, Akone-Ella O, Rahola N, et al. Natural Wolbachia infections are common in the major malaria vectors in Central Africa[J]. Evol Appl, 2019, 12(8): 1583-1594. | [81] | Walker T, Quek S, Jeffries CL, et al. Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes[J]. Curr Biol, 2021, 31(11): 2310-2320.e5. | [82] | Gomes FM, Hixson BL, Tyner MDW, et al. Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission[J]. Proc Natl Acad Sci USA, 2017, 114(47): 12566-12571. | [83] | Gabrieli P, Caccia S, Varotto-Boccazzi I, et al. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission[J]. Front Microbiol, 2021, 12: 630438. | [84] | Duffy PE. Transmission-blocking vaccines: harnessing herd immunity for malaria elimination[J]. Expert Rev Vaccines, 2021, 20(2): 185-198. | [85] | Coelho CH, Rappuoli R, Hotez PJ, et al. Transmission-blocking vaccines for malaria: time to talk about vaccine introduction[J]. Trends Parasitol, 2019, 35(7): 483-486. |
|