中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (6): 749-755.doi: 10.12140/j.issn.1000-7423.2023.06.013
收稿日期:
2023-08-03
修回日期:
2023-10-26
出版日期:
2023-12-30
发布日期:
2023-12-22
通讯作者:
* 赵洪喜(1977-),男,博士,副教授,从事寄生虫及其分子生物学研究。E-mail:作者简介:
马悦(2000-),女,硕士研究生,从事寄生虫及其分子生物学研究。E-mail:2233821461@qq.com
基金资助:
MA Yue(), ZHAO Baocai, ZHOU Jiali, HU Junhao, ZHAO Hongxi*(
)
Received:
2023-08-03
Revised:
2023-10-26
Online:
2023-12-30
Published:
2023-12-22
Contact:
* E-mail: Supported by:
摘要:
miRNA是一种人和动物体内含量丰富的小型单链非编码RNA,可调控细胞能量代谢、细胞增殖和凋亡、肿瘤发生和病毒入侵等过程。顶复门寄生虫是一种严格寄生于细胞内的专性原虫。近年的研究发现,miRNA在顶复门寄生虫感染过程中起重要的调控作用。miRNA不仅可作为一种新型标志物,用于监测寄生虫病的发生、发展、诊断和预后,还作为新型调控因子参与宿主与寄生虫的相互作用,影响宿主细胞的正常生理过程。本文对miRNA在顶复门寄生虫感染中的调控作用机制进行综述,以期为探索顶复门寄生虫病的预防、诊断和治疗方法提供参考。
中图分类号:
马悦, 赵保才, 周佳丽, 胡峻豪, 赵洪喜. miRNA在顶复门寄生虫感染中调控作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 749-755.
MA Yue, ZHAO Baocai, ZHOU Jiali, HU Junhao, ZHAO Hongxi. Research progress on the regulation of miRNA in the infection of apicomplexan parasites[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(6): 749-755.
[1] |
Ajila V, Colley L, Ste-Croix DT, et al. P-TarPmiR accurately predicts plant-specific miRNA targets[J]. Sci Rep, 2023, 13(1): 332.
doi: 10.1038/s41598-022-27283-8 pmid: 36609461 |
[2] | Wu ZF, Ding YF, AYNISAHAN RZ, et al. Effect of microRNA-769-3p on the proliferation and migration ability of the KSHV infected nerve cell SH-SY5Y[J]. Chin J Clin Pharmacol, 2023, 39(19): 2775-2779. (in Chinese) |
(吴肇滏, 丁雨飞, 阿依妮萨罕•如则, 等. 微小RNA-769-3p对KSHV感染的神经细胞SH-SY5Y的增殖和迁移能力的影响[J]. 中国临床药理学杂志, 2023, 39(19): 2775-2779.) | |
[3] | Zhang BT, Yuan W, Liu XY, et al. Screening and functional study of key miRNAs in circulating exosomes of hypertension[J]. Chin Pharmacol Bull, 2022, 38(4): 544-551. (in Chinese) |
(张波涛, 袁雯, 刘晓艳, 等. 高血压循环外泌体中关键miRNA的筛选及功能研究[J]. 中国药理学通报, 2022, 38(4): 544-551.) | |
[4] |
Li JJ, Huang MJ, Li Z, et al. Identification of potential whole blood microRNA biomarkers for the blood stage of adult imported falciparum malaria through integrated mRNA and miRNA expression profiling[J]. Biochem Biophys Res Commun, 2018, 506(3): 471-477.
doi: 10.1016/j.bbrc.2018.10.072 |
[5] |
He JJ, Ma J, Wang JL, et al. Analysis of miRNA expression profiling in mouse spleen affected by acute Toxoplasma gondii infection[J]. Infect Genet Evol, 2016, 37: 137-142.
doi: 10.1016/j.meegid.2015.11.005 |
[6] | Liu LP, Tu SY, Yang AH, et al. Research progress of miRNA and its target genes regulating plant root growth and development[J]. J Chin Agric Univ, 2022, 27(11): 47-59. (in Chinese) |
(刘立盘, 涂圣勇, 杨爱红, 等. miRNA及其靶基因调控植物根系生长发育的研究进展[J]. 中国农业大学学报, 2022, 27(11): 47-59.) | |
[7] | Hakimi MA, Ménard R. Do apicomplexan parasites hijack the host cell microRNA pathway for their intracellular development?[J]. F1000 Biol Rep, 2010, 2: 42. |
[8] |
Shapira S, Speirs K, Gerstein A, et al. Suppression of NF-kappaB activation by infection with Toxoplasma gondii[J]. J Infect Dis, 2002, 185(Suppl 1): S66-S72.
doi: 10.1086/jid.2002.185.issue-s1 |
[9] |
Moro L, Bardají A, Macete E, et al. Placental microparticles and microRNAs in pregnant women with Plasmodium falciparum or HIV infection[J]. PLoS One, 2016, 11(1): e0146361.
doi: 10.1371/journal.pone.0146361 |
[10] |
Cai YH, Chen H, Mo XW, et al. Toxoplasma gondii inhibits apoptosis via a novel STAT3-miR-17-92-Bim pathway in macrophages[J]. Cell Signal, 2014, 26(6): 1204-1212.
doi: 10.1016/j.cellsig.2014.02.013 |
[11] | Liu K, Huang HB, Yang GL. miRNA functions in parasite-related immune regulation in hosts[J]. Chin J Parasitol Parasit Dis, 2018, 36(4): 405-408. (in Chinese) |
(刘可, 黄海斌, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(4): 405-408.) | |
[12] | Zhang MG, Gong PT, Zhang XC, et al. The recombinant glycoprotein GP900 of Cryptosporidium parvum induced activation of Akt and MAPK pathways in HCT-8 cells[J]. J Pathog Biol, 2018, 13(5): 457-461, 467. (in Chinese) |
(张梦鸽, 宫鹏涛, 张西臣, 等. 微小隐孢子虫糖蛋白GP900对HCT-8细胞Akt和MAPK通路的影响[J]. 中国病原生物学杂志, 2018, 13(5): 457-461, 467.) | |
[13] | Mammari N, Halabi MA, Yaacoub S, et al. Toxoplasma gondii modulates the host cell responses: an overview of apoptosis pathways[J]. Biomed Res Int, 2019, 2019: 6152489. |
[14] |
Zeiner GM, Norman KL, Thomson JM, et al. Toxoplasma gondii infection specifically increases the levels of key host microRNAs[J]. PLoS One, 2010, 5(1): e8742.
doi: 10.1371/journal.pone.0008742 |
[15] |
Xiao J, Li Y, Prandovszky E, et al. microRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway[J]. Neuroscience, 2014, 268: 128-138.
doi: 10.1016/j.neuroscience.2014.03.015 pmid: 24657774 |
[16] |
El-Sayad M, Abdel Rahman M, Hussein N, et al. MicroRNA-155 expression and butyrylcholinesterase activity in the liver tissue of mice infected with Toxoplasma gondii (avirulent and virulent strains)[J]. Acta Parasitol, 2021, 66(4): 1167-1176.
doi: 10.1007/s11686-021-00383-7 pmid: 33840057 |
[17] |
Meira-Strejevitch CS, Pereira IS, Hippólito DDC, et al. Ocular toxoplasmosis associated with up-regulation of miR-155-5p/miR-29c-3p and down-regulation of miR-21-5p/miR-125b-5p[J]. Cytokine, 2020, 127: 154990.
doi: 10.1016/j.cyto.2020.154990 |
[18] |
Hadighi R, Heidari A, Fallah P, et al. Key plasma microRNAs variations in patients with Plasmodium vivax malaria in Iran[J]. Heliyon, 2022, 8(3): e09018.
doi: 10.1016/j.heliyon.2022.e09018 |
[19] |
Xu MJ, Zhou DH, Nisbet AJ, et al. Characterization of mouse brain microRNAs after infection with cyst-forming Toxoplasma gondii[J]. Parasit Vectors, 2013, 6: 154.
doi: 10.1186/1756-3305-6-154 |
[20] |
Silva VO, Maia MM, Torrecilhas AC, et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response[J]. Parasite Immunol, 2018, 40(9): e12571.
doi: 10.1111/pim.2018.40.issue-9 |
[21] |
Zou Y, Meng JX, Wei XY, et al. CircRNA and miRNA expression analysis in livers of mice with Toxoplasma gondii infection[J]. Front Cell Infect Microbiol, 2022, 12: 1037586.
doi: 10.3389/fcimb.2022.1037586 |
[22] |
Jia BY, Chang ZG, Wei XY, et al. Plasma microRNAs are promising novel biomarkers for the early detection of Toxoplasma gondii infection[J]. Parasit Vectors, 2014, 7: 433.
doi: 10.1186/1756-3305-7-433 |
[23] |
Cannella D, Brenier-Pinchart MP, Braun L, et al. MiR-146a and miR-155 delineate a microRNA fingerprint associated with Toxoplasma persistence in the host brain[J]. Cell Rep, 2014, 6(5): 928-937.
doi: 10.1016/j.celrep.2014.02.002 |
[24] |
Shen J, Xia WY, Khotskaya YB, et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2[J]. Nature, 2013, 497(7449): 383-387.
doi: 10.1038/nature12080 |
[25] |
Bhattacharyya SN, Habermacher R, Martine U, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress[J]. Cell, 2006, 125(6): 1111-1124.
doi: 10.1016/j.cell.2006.04.031 pmid: 16777601 |
[26] |
Sun XY, Xie HB, Zhang HX, et al. B7-H4 reduction induced by Toxoplasma gondii infection results in dysfunction of decidual dendritic cells by regulating the JAK2/STAT3 pathway[J]. Parasit Vectors, 2022, 15(1): 157.
doi: 10.1186/s13071-022-05263-1 |
[27] |
Cai YH, Chen H, Jin L, et al. STAT3-dependent transactivation of miRNA genes following Toxoplasma gondii infection in macrophage[J]. Parasit Vectors, 2013, 6: 356.
doi: 10.1186/1756-3305-6-356 |
[28] |
Jiang D, Wu SZ, Xu LQ, et al. Anti-infection roles of miR-155-5p packaged in exosomes secreted by dendritic cells infected with Toxoplasma gondii[J]. Parasit Vectors, 2022, 15(1): 3.
doi: 10.1186/s13071-021-05003-x pmid: 34986898 |
[29] |
Li SY, Yang J, Wang LY, et al. Expression profile of microRNAs in porcine alveolar macrophages after Toxoplasma gondii infection[J]. Parasit Vectors, 2019, 12(1): 65.
doi: 10.1186/s13071-019-3297-y |
[30] |
Cong W, Zhang XX, He JJ, et al. Global miRNA expression profiling of domestic cat livers following acute Toxoplasma gondii infection[J]. Oncotarget, 2017, 8(15): 25599-25611.
doi: 10.18632/oncotarget.16108 pmid: 28424428 |
[31] |
Thirugnanam S, Rout N, Gnanasekar M. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs[J]. Infect Agent Cancer, 2013, 8(1): 8.
doi: 10.1186/1750-9378-8-8 |
[32] |
Jung BK, Song H, Shin H, et al. Exosomal miRNA-21 from Toxoplasma gondii-infected microglial cells induces the growth of U87 glioma cells by inhibiting tumor suppressor genes[J]. Sci Rep, 2022, 12(1): 16450.
doi: 10.1038/s41598-022-20281-w |
[33] |
Wang L, Wang N, Zhao Y, et al. Toxoplasma gondii causes changes in the host’s expression of cancer‑associated miRNAs[J]. Oncol Lett, 2022, 23(5): 149.
doi: 10.3892/ol.2022.13267 pmid: 35350589 |
[34] |
Mantel PY, Hjelmqvist D, Walch M, et al. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria[J]. Nat Commun, 2016, 7: 12727.
doi: 10.1038/ncomms12727 |
[35] |
Hentzschel F, Hammerschmidt-Kamper C, Börner K, et al. AAV8 mediated in vivo overexpression of miR-155 enhances the protective capacity of genetically attenuated malarial parasites[J]. Mol Ther, 2014, 22(12): 2130-2141.
doi: S1525-0016(16)30260-X pmid: 25189739 |
[36] | Dkhil MA, Al-Quraishy SA, Abdel-Baki AA S, et al. Differential miRNA expression in the liver of BALB/c mice protected by vaccination during crisis of Plasmodium chabaudi blood-stage malaria[J]. Front Microbiol, 2017, 7: 2155. |
[37] |
Delić D, Dkhil M, Al-Quraishy S, et al. Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria[J]. Parasitol Res, 2011, 108(5): 1111-1121.
doi: 10.1007/s00436-010-2152-z |
[38] |
Ikoma M, Gantt S, Casper C, et al. KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite[J]. PLoS One, 2018, 13(2): e0192659.
doi: 10.1371/journal.pone.0192659 |
[39] |
Martin-Alonso A, Cohen A, Quispe-Ricalde MA, et al. Differentially expressed microRNAs in experimental cerebral malaria and their involvement in endocytosis, adherens junctions, FoxO and TGF-β signalling pathways[J]. Sci Rep, 2018, 8(1): 11277.
doi: 10.1038/s41598-018-29721-y pmid: 30050092 |
[40] |
Liu WQ, Hao ZH, Huang LY, et al. Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection[J]. Parasit Vectors, 2017, 10(1): 86.
doi: 10.1186/s13071-017-2027-6 |
[41] |
Wah ST, Hananantachai H, Patarapotikul J, et al. MicroRNA-27a and microRNA-146a SNP in cerebral malaria[J]. Mol Genet Genomic Med, 2019, 7(2): e00529.
doi: 10.1002/mgg3.2019.7.issue-2 |
[42] | Zhu LQ, Feng XY, Hu W, et al. Functions and roles of miRNA during the infection of Anopheles by Plasmodium[J]. Chin J Parasit Dis, 2020, 38(6): 742-748. (in Chinese) |
(朱凌倩, 冯欣宇, 胡薇, 等. miRNA在疟原虫感染按蚊过程中的功能及作用[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 742-748.) | |
[43] |
Winter F, Edaye S, Hüttenhofer A, et al. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion[J]. Nucleic Acids Res, 2007, 35(20): 6953-6962.
doi: 10.1093/nar/gkm686 pmid: 17933784 |
[44] |
Lampe L, Jentzsch M, Kierszniowska S, et al. Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development[J]. Nat Commun, 2019, 10(1): 5634.
doi: 10.1038/s41467-019-13627-y pmid: 31822677 |
[45] |
Jain S, Rana V, Shrinet J, et al. Blood feeding and Plasmodium infection alters the miRNome of Anopheles stephensi[J]. PLoS One, 2014, 9(5): e98402.
doi: 10.1371/journal.pone.0098402 |
[46] |
Chen XM, Splinter PL, O’Hara SP, et al. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection[J]. J Biol Chem, 2007, 282(39): 28929-28938.
doi: 10.1074/jbc.M702633200 |
[47] | Zhou R, Hu GK, Liu J, et al. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses[J]. PLoSPathog, 2009, 5(12): e1000681. |
[48] |
Feng RY, Niu ZW, Zhang XT, et al. Cryptosporidium parvum downregulates miR-181d in HCT-8 cells via the p50-dependent TLRs/NF-κB pathway[J]. Vet Parasitol, 2022, 305: 109710.
doi: 10.1016/j.vetpar.2022.109710 |
[49] |
Zhang GL, Zhang YJ, Niu ZW, et al. Cryptosporidium parvum upregulates miR-942-5p expression in HCT-8 cells via TLR2/TLR4-NF-κB signaling[J]. Parasit Vectors, 2020, 13(1): 435.
doi: 10.1186/s13071-020-04312-x |
[50] |
Jiang H, Zhang X, Li X, et al. Cryptosporidium parvum regulates HCT-8 cell autophagy to facilitate survival via inhibiting miR-26a and promoting miR-30a expression[J]. Parasit Vect, 2022, 15(1): 470.
doi: 10.1186/s13071-022-05606-y |
[51] |
Gomes J, Salgueiro P, Inácio J, et al. Population diversity of Theileria annulata in Portugal[J]. Infect Genet Evol, 2016, 42: 14-19.
doi: 10.1016/j.meegid.2016.04.023 |
[52] |
Tajeri S, Haidar M, Sakura T, et al. Interaction between transforming Theileria parasites and their host bovine leukocytes[J]. Mol Microbiol, 2021, 115(5): 860-869.
doi: 10.1111/mmi.v115.5 |
[53] |
Gillan V, Simpson DM, Kinnaird J, et al. Characterisation of infection associated microRNA and protein cargo in extracellular vesicles of Theileria annulata infected leukocytes[J]. Cell Microbiol, 2019, 21(1): e12969.
doi: 10.1111/cmi.v21.1 |
[54] |
Haidar M, Tajeri S, Momeux L, et al. MiR-34c-3p regulates protein kinase A activity independent of cAMP by dicing prkar2b transcripts in Theileria annulata-infected leukocytes[J]. mSphere, 2023, 8(2): e0052622.
doi: 10.1128/msphere.00526-22 |
[55] |
Haidar M, Rchiad Z, Ansari HR, et al. MiR-126-5p by direct targeting of JNK-interacting protein-2 (JIP-2) plays a key role in Theileria-infected macrophage virulence[J]. PLoS Pathog, 2018, 14(3): e1006942.
doi: 10.1371/journal.ppat.1006942 |
[56] |
Marsolier J, Perichon M, DeBarry JD, et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation[J]. Nature, 2015, 520(7547): 378-382.
doi: 10.1038/nature14044 |
[57] |
Yin F, Liu J, Gao S, et al. Exploring the TLR and NLR signaling pathway relevant molecules induced by the Theileria annulata infection in calves[J]. Parasitol Res, 2018, 117(10): 3269-3276.
doi: 10.1007/s00436-018-6026-0 |
[58] |
Zhang L, Chen LL, Zhang HT, et al. A comparative study of microRNAs in different stages of Eimeria tenella[J]. Front Vet Sci, 2022, 9: 954725.
doi: 10.3389/fvets.2022.954725 |
[59] |
Giles T, van Limbergen T, Sakkas P, et al. Diagnosis of sub-clinical coccidiosis in fast growing broiler chickens by microRNA profiling[J]. Genomics, 2020, 112(5): 3218-3225.
doi: S0888-7543(19)30741-4 pmid: 32198064 |
[60] |
Dkhil M, Abdel-Baki AA, Delić D, et al. Eimeria papillata: upregulation of specific miRNA-species in the mouse jejunum[J]. Exp Parasitol, 2011, 127(2): 581-586.
doi: 10.1016/j.exppara.2010.11.002 pmid: 21093440 |
[61] |
Chen XL, Wang ZJ, Chen YF, et al. Transcriptome analysis of differentially expressed circRNAs miRNAs and mRNAs during the challenge of coccidiosis[J]. Front Immunol, 2022, 13: 910860.
doi: 10.3389/fimmu.2022.910860 |
[62] |
Al-Quraishy S, Delic D, Sies H, et al. Differential miRNA expression in the mouse jejunum during garlic treatment of Eimeria papillata infections[J]. Parasitol Res, 2011, 109(2): 387-394.
doi: 10.1007/s00436-011-2266-y pmid: 21301871 |
[1] | 国家感染性疾病临床医学研究中心, 国家传染病医学中心撰写组. 食源性寄生虫病诊治专家共识(2023)[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 653-668. |
[2] | 武佳慧, 宋晓, 程鹏, 刘宏美, 郭秀霞, 王海防, 公茂庆. 靶向调控蚊虫CYP450s基因的miRNA鉴定及分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(6): 683-690. |
[3] | 刘华熳, Bikash Giri, 方传涛, 郑亚萌, 吴慧欣, 曾敏浩, 李姗, 程国锋. 日本血吸虫m6A修饰的性别相关circRNA鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 552-558. |
[4] | 覃裴溪, 周彩显, 鲁志刚, 张碧瀛, 周涛勋, 胡敏. 粪类圆线虫感染性Ⅲ期幼虫和寄生性雌虫miRNA的鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 412-420. |
[5] | 杨金颋, 黄晓宾, 王玉娟, 郭宪国, 张现政, 杨慧娟, 郑小燕. 云南大理毛腿鼠耳蝠体表寄生虫感染情况及其体表寄生蛛蝇的形态特征和系统进化分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 452-458. |
[6] | 李小丽, 栗绍刚, 吴赵永. 双叶槽绦虫肠道感染患者的临床表现特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 459-463. |
[7] | 王峰, 吴凡, 李琳琳, 黄青青. 安徽省芜湖市野鼠寄生虫感染情况分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 516-519. |
[8] | 谢宜, 王莹, 王旭, 施丹丹, 付梅花, 李春阳, 伍卫平, 丹巴泽里, 廖沙, 张凯歌, 邓雪莹, 官亚宜. 基于高通量测序的家犬粪便寄生虫病原调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 325-330. |
[9] | 盛慧锋, 周晓农, 余森海, 汤林华, 冯正, 李石柱, 薛纯良, 吴观陵, 余新炳, 温廷桓, 程训佳, 潘卫庆, 胡薇, 苏川, 汪天平, 吴忠道, 陈勤, 张争艳, 戴菁, 李菂, 刘雨舟, 曹建平. 《中国寄生虫学与寄生虫病杂志》创刊40年发展历程[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 1-9. |
[10] | 陈琳, 朱继峰, 邱竞帆, 徐志鹏, 张东辉, 陈璐, 何健, 李伟, 杨坤, 季旻珺. 寓全健康理念于血吸虫病防控虚拟仿真项目建设[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 81-84. |
[11] | 蒋天哥, 曾文博, 李中秋, 张仪. 非编码RNA在利什曼病中的调控作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 92-97. |
[12] | 吴晓莹, 胡媛, 曹建平. 寄生虫病表位疫苗研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 98-102. |
[13] | 乜茹, 李文登, 冶赓博, 尹凤娇, 庞明泉, 王志鑫, 樊海宁. 细胞焦亡在人体寄生虫病中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 780-785. |
[14] | 荣智利, 石婷婷. 脑曼氏裂头蚴病误诊1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 817-820. |
[15] | 徐志鹏, 季旻珺, 吴观陵. 寄生虫虫源性成分对宿主的毒理与药理效应[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 561-571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||