[1] |
Cao CL, Guo JG. Challenge and strategy of prevention and control of important parasitic diseases under the Belt and Road Initiative[J]. Chin J Schisto Control, 2018, 30(2): 111-116. (in Chinese)
|
|
曹淳力, 郭家钢. “一带一路”建设中重要寄生虫病防控面临的挑战与对策[J]. 中国血吸虫病防治杂志, 2018, 30(2): 111-116.
|
[2] |
World Health Organization. World malaria report 2020: 20 years of global progress and challenges[R]. Geneva: WHO, 2020: 232-243.
|
[3] |
Bitoh T, Fueda K, Ohmae H, et al. Risk analysis of the re-emergence of Plasmodium vivax malaria in Japan using a stochastic transmission model[J]. Environ Health Prev Med, 2011, 16(3): 171-177.
doi: 10.1007/s12199-010-0184-8
|
[4] |
Jiang T, Zhang JQ, Fang YL, et al. Application of geographic information system in the study of vector-borne infectious diseases[J]. Port Heath Contr, 2019, 24(3): 55-58. (in Chinese)
|
|
(江婷, 张建庆, 方义亮, 等. 地理信息系统在虫媒传染病研究中的应用[J]. 口岸卫生控制, 2019, 24(3): 55-58.)
|
[5] |
He ZQ, Jiang TT, Ji PH, et al. Surveillance and analysis of imported malaria cases in Henan under the situation of prevention and control of COVID-19[J]. Henan J Prev Med, 2022, 33(11): 833-837. (in Chinese)
|
|
(贺志权, 蒋甜甜, 纪鹏慧, 等. 新型冠状病毒肺炎疫情防控形势下河南省输入性疟疾病例监测分析[J]. 河南预防医学杂志, 2022, 33(11): 833-837.)
|
[6] |
Lei L, Mamatjan UMAR, Li ZH, et al. Research progress on risk assessment of secondary transmission of imported malaria[J]. Chin J Parasitol Parasit Dis, 2016, 34(5): 468-472. (in Chinese)
|
|
(雷蕾, 买买提江•吾买尔, 李志宏, 等. 输入性疟疾引起继发传播的风险评估研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(5): 468-472.)
|
[7] |
Mo XT, Xia S, Ai L, et al. Study on a framework for risk assessment of imported malaria in China during malaria elimination[J]. Chin Trop Med, 2021, 21(6): 505-511. (in Chinese)
|
|
(莫晓彤, 夏尚, 艾琳, 等. 在消除阶段我国疟疾风险评估指标体系研究[J]. 中国热带医学, 2021, 21(6): 505-511.)
doi: 10.13604/j.cnki.46-1064/r.2021.06.02
|
[8] |
Wang XH. Establishment of re-epidemic risk index system and synthetical evaluation in the elimination of malaria, Fujian Province, China[D]. Fuzhou: Fujian Medical University, 2015: 33-35. (in Chinese)
|
|
(王晓欢. 福建省疟疾消除地区重新流行风险指标体系的构建与综合评估[D]. 福州: 福建医科大学, 2015: 33-35.)
|
[9] |
Romi R, Sabatinelli G, Majori G. Could malaria reappear in Italy?[J]. Emerg Infect Dis, 2001, 7(6): 915-919
pmid: 11747716
|
[10] |
Danis K, Lenglet A, Tseroni M, et al. Malaria in Greece: historical and current reflections on a re-emerging vector borne disease[J]. Travel Med Infect Dis, 2013, 11(1): 8-14.
doi: 10.1016/j.tmaid.2013.01.001
pmid: 23434287
|
[11] |
Linard C, Ponçon N, Fontenille D, et al. Risk of malaria reemergence in southern France: testing scenarios with a multiagent simulation model[J]. Ecohealth, 2009, 6(1): 135-147.
doi: 10.1007/s10393-009-0236-y
pmid: 19449076
|
[12] |
Mo XT. Study on risk assessment on malaria importation and re-establishment in China during malaria elimination[D]. Beijing: Chinese Center for Disease Control and Prevention, 2021: 17-19. (in Chinese)
|
|
(莫晓彤. 消除阶段中国疟疾输入再传播风险评估研究[D]. 北京: 中国疾病预防控制中心, 2021: 17-19.)
|
[13] |
Peng J, Zhang HT, Zhao H, et al. Correlation analysis on imported malaria and dverseas labor service personnel in Jinan customs areas from 2017 to 2018[J]. Port Heath Contr, 2020, 25(1): 50-52, 57. (in Chinese)
|
|
(彭健, 张海婷, 赵辉, 等. 济南海关辖区2017—2018年输入性疟疾与出国劳务人员相关性分析[J]. 口岸卫生控制, 2020, 25(1): 50-52, 57.)
|
[14] |
Chen R, Wang NN, Zhao Y, et al. Complex network analysis of inter-provincial mobile population based on improved gravity model[J]. China Popul Resour Environ, 2014, 24(10): 104-113. (in Chinese)
|
|
(陈锐, 王宁宁, 赵宇, 等. 基于改进重力模型的省际流动人口的复杂网络分析[J]. 中国人口•资源与环境, 2014, 24(10): 104-113.)
|
[15] |
Zhang L, Yin JH, Xia ZG. Risks of and response to cluster outbreak of imported malaria during malaria post-elimination phase in China[J]. Chin Trop Med, 2023, 23(6): 585-589. (in Chinese)
|
|
(张丽, 尹建海, 夏志贵. 中国消除疟疾后输入性疟疾突发聚集性疫情的风险和应对[J]. 中国热带医学, 2023, 23(6): 585-589.)
doi: 10.13604/j.cnki.46-1064/r.2023.06.05
|
[16] |
Lan ZY, Li Y, Huang YT, et al. Construction of a risk assessment indicator system for re-establishment of imported malaria[J]. Chin J Schisto Control, 2022, 34(2): 163-171. (in Chinese)
|
|
(兰子尧, 李杨, 黄雨婷, 等. 输入性疟疾再传播风险评估指标体系的构建[J]. 中国血吸虫病防治杂志, 2022, 34(2): 163-171.)
|
[17] |
Simini F, Barlacchi G, Luca M, et al. Deep Gravity: enhancing mobility flows generation with deep neural networks and geographic information[EB/OL]. 2020. https://arxiv.org/abs/2012.00489.
|
[18] |
Barbosa H, Barthelemy M, Ghoshal G, et al. Human mobility: models and applications[J]. Phys Rep, 2018, 734: 1-74.
doi: 10.1016/j.physrep.2018.01.001
|
[19] |
Sallah K, Giorgi R, Bengtsson L, et al. Mathematical models for predicting human mobility in the context of infectious disease spread: introducing the impedance model[J]. Int J Health Geogr, 2017, 16(1): 42.
doi: 10.1186/s12942-017-0115-7
pmid: 29166908
|
[20] |
Marshall JM, Wu SL, Sanchez C HM, et al. Mathematical models of human mobility of relevance to malaria transmission in Africa[J]. Sci Rep, 2018, 8(1): 7713.
doi: 10.1038/s41598-018-26023-1
pmid: 29769582
|
[21] |
Yan XY, Wang WX, Gao ZY, et al. Universal model of individual and population mobility on diverse spatial scales[J]. Nat Commun, 2017, 8(1): 1639.
doi: 10.1038/s41467-017-01892-8
|
[22] |
Macpherson DW, Gushulak BD. Balancing prevention and screening among international migrants with tuberculosis: Population mobility as the major epidemiological influence in low-incidence nations[J]. Public Health, 2006, 120(8): 712-723.
pmid: 16828821
|
[23] |
Simini F, Barlacchi G, Luca M, et al. A deep gravity model for mobility flows generation[J]. Nat Commun, 2021, 12(1): 6576.
doi: 10.1038/s41467-021-26752-4
pmid: 34772925
|