中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (1): 92-97.doi: 10.12140/j.issn.1000-7423.2023.01.014
收稿日期:
2022-04-27
修回日期:
2022-06-29
出版日期:
2023-02-28
发布日期:
2023-02-24
通讯作者:
* 张仪(1966-),女,研究员,从事病原生物学、媒介生物学、媒介生物学与控制、医学寄生虫学等方面的研究。E-mail:作者简介:
蒋天哥(1998-),女,硕士研究生,从事全健康和传染病研究。E-mail:J_Tiane@163.com
基金资助:
JIANG Tiange1(), ZENG Wenbo2, LI Zhongqiu2, ZHANG Yi1,2,*(
)
Received:
2022-04-27
Revised:
2022-06-29
Online:
2023-02-28
Published:
2023-02-24
Contact:
* E-mail: Supported by:
摘要:
利什曼原虫可寄生于人或动物的巨噬细胞中,其引起的利什曼病是一种被忽视的热带病,据估计每年死亡人数高达4万人。非编码RNA(ncRNA)是一种不被翻译成蛋白质的基因组转录本,在多种疾病的发生发展过程中起重要的调控作用,在炎症和免疫应答中尤其突出。目前对于ncRNA在利什曼病中作用机制的研究相对较少,已有的研究表明,在利什曼原虫感染宿主初期,ncRNA通过调节抗原呈递、免疫应答、细胞自噬、细胞凋亡等过程,对原虫在宿主体内的增殖和感染起调节作用。本文对ncRNA在利什曼病中的作用机制进行综述,为利什曼病的预防、诊断和治疗提供参考。
中图分类号:
蒋天哥, 曾文博, 李中秋, 张仪. 非编码RNA在利什曼病中的调控作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 92-97.
JIANG Tiange, ZENG Wenbo, LI Zhongqiu, ZHANG Yi. Research advances in the regulatory role of non-coding RNA in leishmaniasis[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(1): 92-97.
[1] |
Naderer T, McConville MJ. Intracellular growth and pathogenesis of Leishmania parasites[J]. Essays Biochem, 2011, 51: 81-95.
doi: 10.1042/bse0510081 pmid: 22023443 |
[2] |
Tamgue O, Mezajou CF, Ngongang NN, et al. Non-coding RNAs in the etiology and control of major and neglected human tropical diseases[J]. Front Immunol, 2021, 12: 703936.
doi: 10.3389/fimmu.2021.703936 |
[3] | Li S, Wu WP. Changes of risk factors and control progress of leishmaniasis[J]. Endem Dis Bull, 2006, 21(1): 95-97, 100. (in Chinese) |
(李森, 伍卫平. 利什曼病的危险因素变迁与控制进展[J]. 地方病通报, 2006, 21(1): 95-97, 100.) | |
[4] | Chen LL, Feng SS, Fan ZS, et al. Progress in non-coding RNA research[J]. Sci SinVitae, 2019, 49(12): 1573-1605. (in Chinese) |
(陈玲玲, 冯珊珊, 范祖森, 等. 非编码RNA研究进展[J]. 中国科学: 生命科学, 2019, 49(12): 1573-1605.) | |
[5] |
Singh RP, Massachi I, Manickavel S, et al. The role of miRNA in inflammation and autoimmunity[J]. Autoimmun Rev, 2013, 12(12): 1160-1165.
doi: 10.1016/j.autrev.2013.07.003 pmid: 23860189 |
[6] | Goswami A, Mukherjee K, Mazumder A, et al. MicroRNA exporter HuR clears the internalized pathogens by promoting pro-inflammatory response in infected macrophages[J]. EMBO Mol Med, 2020, 12(3): e11011. |
[7] |
Muxel SM, Laranjeira-Silva MF, Zampieri RA, et al. Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism[J]. Sci Rep, 2017, 7: 44141.
doi: 10.1038/srep44141 |
[8] |
Fernandes JCR, Aoki JI, Maia Acuña S, et al. Melatonin and Leishmania amazonensis infection altered miR-294, miR-30e, and miR-302d impacting on Tnf, Mcp-1, and Nos 2 expression[J]. Front Cell Infect Microbiol, 2019, 9: 60.
doi: 10.3389/fcimb.2019.00060 |
[9] | Varikuti S, Natarajan G, Volpedo G, et al. MicroRNA 155 contributes to host immunity against Leishmania donovani but is not essential for resolution of infection[J]. Infect Immun, 2019, 87(8): e00307-19. |
[10] |
Hamidi F, Mohammadi-Yeganeh S, Haji Molla Hoseini M, et al. Inhibition of anti-inflammatory cytokines, IL-10 and TGF-β, in Leishmania major infected macrophage by miRNAs: a new therapeutic modality against leishmaniasis[J]. Microb Pathog, 2021, 153: 104777.
doi: 10.1016/j.micpath.2021.104777 |
[11] |
Oghumu S, Stock JC, Varikuti S, et al. Transgenic expression of CXCR3 on T cells enhances susceptibility to cutaneous Leishmania major infection by inhibiting monocyte maturation and promoting a Th2 response[J]. Infect Immun, 2015, 83(1): 67-76.
doi: 10.1128/IAI.02540-14 pmid: 25312956 |
[12] |
Varikuti S, Verma C, Natarajan G, et al. MicroRNA155 plays a critical role in the pathogenesis of cutaneous Leishmania major infection by promoting a Th2 response and attenuating dendritic cell activity[J]. Am J Pathol, 2021, 191(5): 809-816.
doi: 10.1016/j.ajpath.2021.01.012 pmid: 33539779 |
[13] |
Varikuti S, Verma C, Holcomb E, et al. MicroRNA-21 deficiency promotes the early Th1 immune response and resistance toward visceral leishmaniasis[J]. J Immunol, 2021, 207(5): 1322-1332.
doi: 10.4049/jimmunol.2001099 pmid: 34341171 |
[14] |
Melo LM, Bragato JP, Venturin GL, et al. Induction of miR-21 impairs the anti-Leishmania response through inhibition of IL-12 in canine splenic leukocytes[J]. PLoS One, 2019, 14(12): e0226192.
doi: 10.1371/journal.pone.0226192 |
[15] |
Beattie L, Peltan A, Maroof A, et al. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells[J]. PLoS Pathog, 2010, 6(3): e1000805.
doi: 10.1371/journal.ppat.1000805 |
[16] |
Momen-Heravi F, Bala SS, Kodys K, et al. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS[J]. Sci Rep, 2015, 5: 9991.
doi: 10.1038/srep09991 pmid: 25973575 |
[17] | Ganguly S, Ghoshal B, Banerji I, et al. Leishmania survives by exporting miR-146a from infected to resident cells to subjugate inflammation[J]. Life Sci Alliance, 2022, 5(6): e202101229. |
[18] |
Ponte-Sucre A, Gamarro F, Dujardin JC, et al. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge[J]. PLoS Negl Trop Dis, 2017, 11(12): e0006052.
doi: 10.1371/journal.pntd.0006052 |
[19] |
Mukherjee B, Paul J, Mukherjee S, et al. Antimony-resistant Leishmania donovani exploits miR-466i to deactivate host MyD88 for regulating IL-10/IL-12 levels during early hours of infection[J]. J Immunol, 2015, 195(6): 2731-2742.
doi: 10.4049/jimmunol.1402585 |
[20] | Wang HK, Han DS. Toll-like receptors signaling and regulation of immune response[J]. Prog Biochem Biophys, 2006, 33(9): 820-827. (in Chinese) |
(王海坤, 韩代书. Toll样受体(TLRs)的信号转导与免疫调节[J]. 生物化学与生物物理进展, 2006, 33(9): 820-827.) | |
[21] |
Virtue A, Wang H, Yang XF. MicroRNAs and toll-like receptor/interleukin-1 receptor signaling[J]. J Hematol Oncol, 2012, 5: 66.
doi: 10.1186/1756-8722-5-66 |
[22] |
Muxel SM, Acuña SM, Aoki JI, et al. Toll-like receptor and miRNA-let-7e expression alter the inflammatory response in Leishmania amazonensis-infected macrophages[J]. Front Immunol, 2018, 9: 2792.
doi: 10.3389/fimmu.2018.02792 |
[23] |
Souza MA, Ramos-Sanchez EM, Muxel SM, et al. MiR-548d-3p alters parasite growth and inflammation in Leishmania (viannia) braziliensis infection[J]. Front Cell Infect Microbiol, 2021, 11: 687647.
doi: 10.3389/fcimb.2021.687647 |
[24] |
Ramos-Sanchez EM, Reis LC, Souza MA, et al. MiR-548d-3p is up-regulated in human visceral leishmaniasis and suppresses parasite growth in macrophages[J]. Front Cell Infect Microbiol, 2022, 12: 826039.
doi: 10.3389/fcimb.2022.826039 |
[25] |
Nunes S, Silva IB, Ampuero MR, et al. Integrated analysis reveals that miR-193b, miR-671, and TREM-1 correlate with a good response to treatment of human localized cutaneous leishmaniasis caused by Leishmania braziliensis[J]. Front Immunol, 2018, 9: 640.
doi: 10.3389/fimmu.2018.00640 pmid: 29670621 |
[26] |
Suttles J, Stout R D. Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis[J]. Semin Immunol, 2009, 21(5): 257-264.
doi: 10.1016/j.smim.2009.05.011 pmid: 19540774 |
[27] | Zheng JB, Yang Y, Chen X. Research progress on the decisive role of TNFR2 in the activation, proliferative expansion, and function of CD4+Foxp3+Treg[J]. Curr Immunol, 2022, 42(1): 1-6, 71. (in Chinese) |
(郑静彬, 杨阳, 陈新. TNFR2对CD4+Foxp3+Treg的活化、增殖及功能影响的研究进展[J]. 现代免疫学, 2022, 42(1): 1-6, 71.) | |
[28] | Acuña SM, Zanatta JM, de Almeida Bento C, et al. MiR-294 and miR-410 negatively regulate Tnfa, arginine transporter Cat 1/2, and Nos 2 mRNAs in murine macrophages infected with Leishmania amazonensis[J]. Noncoding RNA, 2022, 8(1): 17. |
[29] | Kumar A, Das S, Mandal A, et al. Leishmania infection activates host mTOR for its survival by M2 macrophage polarization[J]. Parasite Immunol, 2018, 40(11): e12586. |
[30] |
Misra S, Tripathi MK, Chaudhuri G. Down-regulation of 7SL RNA expression and impairment of vesicular protein transport pathways by Leishmania infection of macrophages[J]. J Biol Chem, 2005, 280(32): 29364-29373.
doi: 10.1074/jbc.M504162200 |
[31] |
Essandoh K, Li YT, Huo JZ, et al. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response[J]. Shock, 2016, 46(2): 122-131.
doi: 10.1097/SHK.0000000000000604 pmid: 26954942 |
[32] |
He XX, Gong PT, Wei ZK, et al. Peroxisome proliferator-activated receptor-γ-mediated polarization of macrophages in Neospora caninum infection[J]. Exp Parasitol, 2017, 178: 37-44.
doi: 10.1016/j.exppara.2017.05.002 |
[33] |
Silva RLL, Santos MB, Almeida PLS, et al. sCD163 levels as a biomarker of disease severity in leprosy and visceral leishmaniasis[J]. PLoS Negl Trop Dis, 2017, 11(3): e0005486.
doi: 10.1371/journal.pntd.0005486 |
[34] |
Das S, Mukherjee S, Ali N. Super enhancer-mediated transcription of miR146a-5p drives M2 polarization during Leishmania donovani infection[J]. PLoS Pathog, 2021, 17(2): e1009343.
doi: 10.1371/journal.ppat.1009343 |
[35] |
Diotallevi A, De Santi M, Buffi G, et al. Leishmania infection induces microRNA hsa-miR-346 in human cell line-derived macrophages[J]. Front Microbiol, 2018, 9: 1019.
doi: 10.3389/fmicb.2018.01019 pmid: 29867904 |
[36] |
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10): 722-737.
doi: 10.1038/nri3532 pmid: 24064518 |
[37] |
Zhao Y, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation[J]. Nat Rev Mol Cell Biol, 2021, 22(11): 733-750.
doi: 10.1038/s41580-021-00392-4 |
[38] |
Frank B, Marcu A, de Oliveira Almeida Petersen AL, et al. Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210[J]. Parasit Vectors, 2015, 8: 404.
doi: 10.1186/s13071-015-0974-3 |
[39] |
Singh AK, Pandey RK, Shaha C, et al. MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy[J]. Autophagy, 2016, 12(10): 1817-1831.
doi: 10.1080/15548627.2016.1203500 |
[40] |
Verma JK, Rastogi R, Mukhopadhyay A. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494[J]. PLoS Pathog, 2017, 13(6): e1006459.
doi: 10.1371/journal.ppat.1006459 |
[41] |
Kern A, Dikic I, Behl C. The integration of autophagy and cellular trafficking pathways via RAB GAPs[J]. Autophagy, 2015, 11(12): 2393-2397.
doi: 10.1080/15548627.2015.1110668 pmid: 26565612 |
[42] |
Zhao GX, Pan H, Ouyang DY, et al. The critical molecular interconnections in regulating apoptosis and autophagy[J]. Ann Med, 2015, 47(4): 305-315.
doi: 10.3109/07853890.2015.1040831 |
[43] |
Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis[J]. Acta Biochim Biophys Sin (Shanghai), 2005, 37(11): 719-727.
doi: 10.1111/j.1745-7270.2005.00108.x |
[44] |
Lasjerdi Z, Ghanbarian H, Mohammadi Yeganeh S, et al. Comparative expression profile analysis of apoptosis-related miRNA and its target gene in Leishmania major infected macrophages[J]. Iran J Parasitol, 2020, 15(3): 332-340.
doi: 10.18502/ijpa.v15i3.4197 pmid: 33082797 |
[45] |
Lemaire J, Mkannez G, Guerfali FZ, et al. MicroRNA expression profile in human macrophages in response to Leishmania major infection[J]. PLoS Negl Trop Dis, 2013, 7(10): e2478.
doi: 10.1371/journal.pntd.0002478 |
[46] |
De Santis R, Liepelt A, Mossanen JC, et al. MiR-155 targets caspase-3 mRNA in activated macrophages[J]. RNA Biol, 2016, 13(1): 43-58.
doi: 10.1080/15476286.2015.1109768 pmid: 26574931 |
[47] |
Kumar V, Kumar A, Das S, et al. Leishmania donovani activates hypoxia inducible factor-1α and miR-210 for survival in macrophages by downregulation of NF-κB mediated pro-inflammatory immune response[J]. Front Microbiol, 2018, 9: 385.
doi: 10.3389/fmicb.2018.00385 |
[48] |
Gholamrezaei M, Rouhani S, Mohebali M, et al. MicroRNAs expression induces apoptosis of macrophages in response to Leishmania major (MRHO/IR/75/ER): an in-vitro and in-vivo study[J]. Iran J Parasitol, 2020, 15(4): 475-487.
doi: 10.18502/ijpa.v15i4.4851 pmid: 33884004 |
[49] |
Abdullah OA, El Gazzar WB, Salem TI, et al. miR-15a: a potential diagnostic biomarker and a candidate for non-operative therapeutic modality for age-related cataract[J]. Br J Biomed Sci, 2019, 76(4): 184-189.
doi: 10.1080/09674845.2019.1639337 |
[50] |
Zhang H, Li Y, Huang Q, et al. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer[J]. Cell Death Differ, 2011, 18(11): 1702-1710.
doi: 10.1038/cdd.2011.28 pmid: 21455217 |
[51] |
Hashemi N, Sharifi M, Masjedi M, et al. Locked nucleic acid-anti-let-7a induces apoptosis and necrosis in macrophages infected with Leishmania major[J]. Microb Pathog, 2018, 119: 193-199.
doi: 10.1016/j.micpath.2018.03.057 |
[52] |
Burza S, Croft SL, Boelaert M. Leishmaniasis[J]. Lancet, 2018, 392(10151): 951-970.
doi: S0140-6736(18)31204-2 pmid: 30126638 |
[53] |
Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer[J]. Nat Rev Cancer, 2018, 18(1): 5-18.
doi: 10.1038/nrc.2017.99 pmid: 29170536 |
[54] |
Poller W, Dimmeler S, Heymans S, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives[J]. Eur Heart J, 2018, 39(29): 2704-2716.
doi: 10.1093/eurheartj/ehx165 pmid: 28430919 |
[55] |
Esteller M. Non-coding RNAs in human disease[J]. Nat Rev Genet, 2011, 12(12): 861-874.
doi: 10.1038/nrg3074 pmid: 22094949 |
[1] | 王小军, 蔡玉成, 邹轩, 李辉, 童波波. 2005—2021年甘肃省陇南市内脏利什曼病流行特征[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 579-585. |
[2] | 郑玉华, 帖萍, 白永飞, 闫昌福, 王婷, 王晶莹, 田晓东, 代培芳. 2021—2022年山西省内脏利什曼病流行区家犬感染情况及白蛉密度调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 470-475. |
[3] | 张旭, 孙希萌. 旋毛虫感染免疫逃逸机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 492-496. |
[4] | 周正斌, 潘改芹, 李元元, 刘琴, 杨丽敏, 李中秋, 马志涛, 张仪, 李石柱. 2021年我国内脏利什曼病疫情分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 149-155. |
[5] | 王芬芬, 张佩君, 任梦枝, 李道好. 2006—2021年山西省阳泉市内脏利什曼病流行特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 228-232. |
[6] | 郭占景, 张世勇, 刘立. 石家庄市内脏利什曼病复现流行病学调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 241-244. |
[7] | 贾枕枕, 刘洪英, 江琦, 王玲玲, 刘相君. 误诊为血液病的内脏利什曼病1例[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 257-259. |
[8] | 顾燕, 于琎, 徐策华. 宁夏44年来首例输入性内脏利什曼病病例报道[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 260-262. |
[9] | 杨成运, 贺志权, 鲁德领, 钱丹, 刘颖, 李素华, 周瑞敏, 邓艳, 张红卫, 王昊, 赵东阳, 郭万申. 2020年河南省内脏利什曼病病例的流行病学调查[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 481-486. |
[10] | 李腾, 沈玉娟, 崔丽君, 刘华, 胡媛, 姜岩岩, 曹建平. 长链非编码RNA NEAT1通过调控IL-8参与肠上皮细胞抗隐孢子虫反应[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 487-492. |
[11] | 陈昕迪, 王腾宇, 石雅琴, 毛晓伟, 闫旭, 苏娅, 温海峰, 王文龙. 捻转血矛线虫阿苯达唑耐药相关长链非编码RNA的表达分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 540-544. |
[12] | 罗卓韦, 周正斌, 公衍峰, 冯家鑫, 李元元, 张仪, 李石柱. 我国内脏利什曼病的流行现状和防控挑战[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 146-152. |
[13] | 王振勋, 熊思思, 孙夏慧, 王永亮, 潘格, 何深一, 丛华. 刚地弓形虫慢性感染小鼠脑组织中lncRNA102796的差异表达及其作用机制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 187-193. |
[14] | 何威, 周必英. 感染蠕虫后宿主T细胞免疫应答相关信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 223-227. |
[15] | 张爱平, 梁曼曼, 朱玲玲, 盛皓宇, 杨江华. 内脏利什曼病治疗后64年复发1例[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 266-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||