[1] |
Beknazarova M, Whiley H, Ross K. Strongyloidiasis: a disease of socioeconomic disadvantage[J]. Int J Environ Res Public Health, 2016, 13(5): 517.
doi: 10.3390/ijerph13050517
|
[2] |
Olsen A, van Lieshout L, Marti H, et al. Strongyloidiasis: the most neglected of the neglected tropical diseases?[J]. Trans R Soc Trop Med Hyg, 2009, 103(10): 967-972.
doi: 10.1016/j.trstmh.2009.02.013
|
[3] |
Puthiyakunnon S, Boddu S, Li YJ, et al. Strongyloidiasis: an insight into its global prevalence and management[J]. PLoS Negl Trop Dis, 2014, 8(8): e3018.
doi: 10.1371/journal.pntd.0003018
|
[4] |
Hu JY. The establishment of Strongyloides stercoralis infected geril model and initial attempt to establish CRISPR/Cas9 knockout method[D]. Wuhan: Huazhong Agricultural University, 2018: 2. (in Chinese)
|
|
(胡锦阳. 粪类圆线虫感染沙鼠模型的建立及CRISPR/Cas9基因敲除方法的初步尝试[D]. 武汉: 华中农业大学, 2018: 2.)
|
[5] |
Marcos LA, Terashima A, Dupont HL, et al. Strongyloides hyperinfection syndrome: an emerging global infectious disease[J]. Trans R Soc Trop Med Hyg, 2008, 102(4): 314-318.
doi: 10.1016/j.trstmh.2008.01.020
|
[6] |
Starr MC, Montgomery SP. Soil-transmitted helminthiasis in the United States: a systematic review: 1940—2010[J]. Am J Trop Med Hyg, 2011, 85(4): 680-684.
doi: 10.4269/ajtmh.2011.11-0214
|
[7] |
Vasquez-Rios G, Pineda-Reyes R, Pineda-Reyes J, et al. Strongyloides stercoralis hyperinfection syndrome: a deeper understanding of a neglected disease[J]. J Parasit Dis, 2019, 43(2): 167-175.
doi: 10.1007/s12639-019-01090-x
|
[8] |
Hammond SM. An overview of microRNAs[J]. Adv Drug Deliv Rev, 2015, 87: 3-14.
doi: 10.1016/j.addr.2015.05.001
|
[9] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5): 843-854.
doi: 10.1016/0092-8674(93)90529-y
pmid: 8252621
|
[10] |
Pasquini G, Kunej T. A map of the microRNA regulatory networks identified by experimentally validated microRNA-target interactions in five domestic animals: cattle, pig, sheep, dog, and chicken[J]. OMICS, 2019, 23(9): 448-456.
doi: 10.1089/omi.2019.0082
pmid: 31381467
|
[11] |
Song XW, Li Y, Cao XF, et al. microRNAs and their regulatory roles in plant-environment interactions[J]. Annu Rev Plant Biol, 2019, 70: 489-525
doi: 10.1146/annurev-arplant-050718-100334
pmid: 30848930
|
[12] |
Ulusan Bağcı Ö, Caner A. The role of microRNAs in parasitology[J]. Turkiye Parazitol Derg, 2020, 44(2): 102-108.
doi: 10.4274/tpd.galenos.2020.6776
pmid: 32482043
|
[13] |
Ahmed R, Chang ZS, Younis AE, et al. Conserved miRNAs are candidate post-transcriptional regulators of developmental arrest in free-living and parasitic nematodes[J]. Genome Biol Evol, 2013, 5(7): 1246-1260.
doi: 10.1093/gbe/evt086
pmid: 23729632
|
[14] |
Ma GX, Luo YF, Zhu HH, et al. microRNAs of Toxocara canis and their predicted functional roles[J]. Parasit Vectors, 2016, 9: 229.
doi: 10.1186/s13071-016-1508-3
|
[15] |
Winter AD, Weir W, Hunt M, et al. Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel[J]. BMC Genomics, 2012, 13: 4.
doi: 10.1186/1471-2164-13-4
pmid: 22216965
|
[16] |
Xu MJ, Fu JH, Nisbet AJ, et al. Comparative profiling of microRNAs in male and female adults of Ascaris suum[J]. Parasitol Res, 2013, 112(3): 1189-1195.
doi: 10.1007/s00436-012-3250-x
|
[17] |
Pomari E, Malerba G, Veschetti L, et al. Identification of miRNAs of Strongyloides stercoralis L1 and iL3 larvae isolated from human stool[J]. Sci Rep, 2022, 12(1): 9957.
doi: 10.1038/s41598-022-14185-y
pmid: 35705621
|
[18] |
Zhang Y. Genome-wide identfication and characterization of novel LncRNAs and extracellular vesicle preliminary study in Strongyloides stercoralis[D]. Wuhan: Huazhong Agricultural University, 2019: 17. (in Chinese)
|
|
(张映. 粪类圆线虫lncRNA的鉴定和验证以及细胞外囊泡的初步研究[D]. 武汉: 华中农业大学, 2019: 17.)
|
[19] |
Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009, 10(3): R25.
doi: 10.1186/gb-2009-10-3-r25
|
[20] |
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140.
doi: 10.1093/bioinformatics/btp616
pmid: 19910308
|
[21] |
Hunt VL, Tsai IJ, Coghlan A, et al. The genomic basis of parasitism in the Strongyloides clade of nematodes[J]. Nat Genet, 2016, 48(3):
|
[22] |
Britton C, Laing R, Devaney E. Small RNAs in parasitic nematodes-forms and functions[J]. Parasitology, 2020, 147(8): 855-864.
doi: 10.1017/S0031182019001689
|
[23] |
Liu N, Landreh M, Cao KJ, et al. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila[J]. Nature, 2012, 482(7386): 519-523.
doi: 10.1038/nature10810
|
[24] |
Yang JR, Chen DP, He YN, et al. miR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9[J]. Age, 2013, 35(1): 11-22.
doi: 10.1007/s11357-011-9324-3
|
[25] |
Isik M, Blackwell TK, Berezikov E. microRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans[J]. Sci Rep, 2016, 6: 36766.
doi: 10.1038/srep36766
|
[26] |
Boulias K, Horvitz HR. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO[J]. Cell Metab, 2012, 15(4): 439-450.
doi: 10.1016/j.cmet.2012.02.014
|
[27] |
Zhang XC, Zabinsky R, Teng YD, et al. microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause[J]. Proc Natl Acad Sci USA, 2011, 108(44): 17997-18002.
doi: 10.1073/pnas.1105982108
|
[28] |
Pérez MG, Spiliotis M, Rego N, et al. Deciphering the role of miR-71 in Echinococcus multilocularis early development in vitro[J]. PLoS Negl Trop Dis, 2019, 13(12): e0007932.
doi: 10.1371/journal.pntd.0007932
|
[29] |
Zheng YD, Guo XL, He W, et al. Effects of Echinococcus multilocularis miR-71 mimics on murine macrophage RAW264.7 cells[J]. Int Immunopharmacol, 2016, 34: 259-262.
doi: 10.1016/j.intimp.2016.03.015
|
[30] |
Yang ML, Wang YL, Jiang F, et al. miR-71 and miR-263 jointly regulate target genes chitin synthase and chitinase to control locust molting[J]. PLoS Genet, 2016, 12(8): e1006257.
doi: 10.1371/journal.pgen.1006257
|
[31] |
Davis MW, Birnie AJ, Chan AC, et al. A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans[J]. Development, 2004, 131(23): 6001-6008.
doi: 10.1242/dev.01454
|
[32] |
Gamble HR, Purcell JP, Fetterer RH. Purification of a 44 kilodalton protease which mediates the ecdysis of infective Haemonchus contortus larvae[J]. Mol Biochem Parasitol, 1989, 33(1): 49-58.
doi: 10.1016/0166-6851(89)90041-8
|
[33] |
Stepek G, McCormack G, Birnie AJ, et al. The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes[J]. Parasitology, 2011, 138(2): 237-248.
doi: 10.1017/S0031182010001113
pmid: 20800010
|
[34] |
Audhya A, Desai A, Oegema K. A role for Rab5 in structuring the endoplasmic reticulum[J]. J Cell Biol, 2007, 178(1): 43-56.
pmid: 17591921
|
[35] |
Sann SB, Crane MM, Lu H, et al. Rabx-5 regulates RAB-5 early endosomal compartments and synaptic vesicles in C. elegans[J]. PLoS One, 2012, 7(6): e37930.
doi: 10.1371/journal.pone.0037930
|
[36] |
Kamikura DM, Cooper JA. Clathrin interaction and subcellular localization of Ce-DAB-1, an adaptor for protein secretion in Caenorhabditis elegans[J]. Traffic, 2006, 7(3): 324-336.
pmid: 16497226
|