中国寄生虫学与寄生虫病杂志 ›› 2020, Vol. 38 ›› Issue (6): 742-748.doi: 10.12140/j.issn.1000-7423.2020.06.011
收稿日期:
2020-06-11
出版日期:
2020-12-30
发布日期:
2021-01-12
通讯作者:
李石柱
作者简介:
朱凌倩(1993-),女,硕士研究生,从事媒传疾病分子生物学研究。E-mail: 基金资助:
ZHU Ling-qian(), FENG Xin-yu, HU Wei, LI Shi-zhu*(
)
Received:
2020-06-11
Online:
2020-12-30
Published:
2021-01-12
Contact:
LI Shi-zhu
Supported by:
摘要:
miRNA是一类长度约21~24个碱基的单链非编码RNA,通过靶向mRNA 3′端非翻译区结合导致mRNA降解或翻译抑制,在按蚊对入侵病原体的防御反应等多种生物学过程中均发挥重要功能。本文就miRNA在疟原虫感染按蚊过程中可能发挥的功能、所涉及的靶基因及参与的信号通路等方面进行综述。
中图分类号:
朱凌倩, 冯欣宇, 胡薇, 李石柱. miRNA在疟原虫感染按蚊过程中的功能及作用[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 742-748.
ZHU Ling-qian, FENG Xin-yu, HU Wei, LI Shi-zhu. Functions and roles of miRNA during the infection of Anopheles by Plasmodium[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2020, 38(6): 742-748.
表1
按蚊miRNAs及其靶基因和功能
miRNA | 疟原虫感染后表达变化 | 靶基因 | 功能 | 蚊媒 |
---|---|---|---|---|
miR-1174 | 下调[ | 丝氨酸羟甲基转移酶[ | 调节相关的肠道功能,包括 血液摄取、体液排泄和糖吸收[ | 冈比亚按蚊(Anopheles gambiae)[ |
MiR-276 | 支链氨基酸转移酶(BCAT)[ | 蚊子的繁殖周期和恶性疟原虫(Plasmodium falciparum)的发育[ | An. coluzzii[ | |
miR-305 | 上调[ | 可能调控已知的抗疟原虫 效应基因[ | 恶性疟原虫(P. falciparum)的 发育、肠微生物群的 免疫力[ | 冈比亚按蚊(An. gambiae)[ |
miR-989 | 上调[ | 潜在的候选基因:STAT蛋白 抑制剂(PIAS)[ | 中肠疟原虫发育的激动剂[ | 冈比亚按蚊(An. gambiae)[ |
miR-34 | 下调[ | 抗氧化1(OXR1)[ 工型2(Thymosin isoform 2)[ | 疟原虫发育[ | 冈比亚按蚊(An. gambiae)[ |
miR-275 | 下调[ | amino acid/target of rapamycin(AA/TOR),20-羟基蜕皮激素[ | 与疟原虫感染有关[ 埃及伊蚊中的卵子发育,体液 排泄,血液消化[ | 嗜人按蚊(An. anthropophagus)[ |
[1] | World Health Organization. World Malaria Report 2019[R]. Geneva: WHO, 2019. |
[2] |
Ranson H, N’guessan R, Lines J, et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?[J]. Trends Parasitol, 2011,27(2):91-98.
pmid: 20843745 |
[3] |
Chaturvedi N, Bharti PK, Tiwari A, et al. Strategies and recent development of transmission-blocking vaccines against Plasmodium falciparum[J]. Indian J Med Res, 2016,143(6):696-711.
pmid: 27748294 |
[4] | Zheng WQ, Wang JR, Wang H, et al. Truncated Plasmodium berghei putative secreted ookinete protein 7 induces transmission-blocking immunity[J]. Chin J Parasitol Parasit Dis, 2019,37(5):520-524, 531. (in Chinese) |
( 郑文琪, 王俊瑞, 王华, 等. 伯氏疟原虫推测分泌动合子蛋白7截短片段传播阻断功能的研究[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(5):520-524, 531.) | |
[5] | Cirimotich CM, Dong Y, Garver LS, et al. Mosquito immune defenses against Plasmodium infection[J]. Dev Comp Immunol, 2010,34(4):387-395. |
[6] | Cai Z, Yu X, Cheng G. Progress towards mosquito microbiome on regulating the transmission of mosquito-borne diseases[J]. Chin J Parasitol Parasit Dis, 2019,37(5):603-608. (in Chinese) |
( 蔡珍, 余茜, 程功. 蚊肠道微生物调节蚊媒传染病传播的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(5):603-608.) | |
[7] | Vaughan JA, Noden BH, Beier JC. Sporogonic development of cultured Plasmodium falciparum in six species of laboratory-reared Anopheles mosquitoes[J]. Am J Trop Med Hyg, 1994,51(2):233-243. |
[8] |
Hillyer JF, Barreau C, Vernick KD. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel[J]. Int J Parasitol, 2007,37(6):673-681.
pmid: 17275826 |
[9] |
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233.
pmid: 19167326 |
[10] |
Liang H, Zen K, Zhang J, et al. New roles for microRNAs in cross-species communication[J]. RNA Biol, 2013,10(3):367-370.
pmid: 23364352 |
[11] | O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses[J]. Annu Rev Immunol, 2012,30:295-312. |
[12] |
Winter F, Edaye S, Hüttenhofer A, et al. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion[J]. Nucleic Acids Res, 2007,35(20):6953-6962.
pmid: 17933784 |
[13] | Biryukova I, Ye T, Levashina E. Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae[J]. BMC Genom, 2014,15(1):1-19. |
[14] |
Dennison NJ, BenMarzouk-Hidalgo OJ, Dimopoulos G. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota[J]. Dev Comp Immunol, 2015,49(1):170-178.
doi: 10.1016/j.dci.2014.10.016 pmid: 25445902 |
[15] |
Jain S, Rana V, Shrinet J, et al. Blood feeding and Plasmodium infection alters the miRNome of Anopheles stephensi[J]. PLoS One, 2014,9(5):e98402.
doi: 10.1371/journal.pone.0098402 pmid: 24866389 |
[16] |
Feng X, Zhou S, Wang J, et al. microRNA profiles and functions in mosquitoes[J]. PLoS Negl Trop Dis, 2018,12(5):e0006463.
pmid: 29718912 |
[17] |
Liu S, Lucas KJ, Roy S, et al. Mosquito-specific microRNA-1174 targets serine hydroxymethyl transferase to control key functions in the gut[J]. Proc Natl Acad Sci USA, 2014,111(40):14460-14465.
pmid: 25246546 |
[18] |
Jain S, Rana V, Tridibes A, et al. Dynamic expression of miRNAs across immature and adult stages of the malaria mosquito Anopheles stephensi[J]. Parasit Vectors, 2015,8:179.
doi: 10.1186/s13071-015-0772-y pmid: 25888742 |
[19] |
Jaramillo-Gutierrez G, Molina-Cruz A, Kumar S, et al. The Anopheles gambiae oxidation resistance 1 (OXR1) gene regulates expression of enzymes that detoxify reactive oxygen species[J]. PLoS One, 2010,5(6):e11168.
pmid: 20567517 |
[20] |
Jain S, Shrinet J, Tridibes A, et al. miRNA-mRNA conflux regulating immunity and oxidative stress pathways in the midgut of blood-fed Anopheles stephensi[J]. Noncoding RNA, 2015,1(3):222-245.
pmid: 29861425 |
[21] | Lampe L, Jentzsch M, Levashina EA. Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development[J]. Nat Commun, 2019,10(1):5634. |
[22] |
Liu W, Hao Z, Huang L, et al. Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection[J]. Parasit Vectors, 2017,10(1):86.
pmid: 28209211 |
[23] |
Bryant B, Macdonald W, Raikhel AS. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti[J]. Proc Natl Acad Sci USA, 2010,107(52):22391-22398.
doi: 10.1073/pnas.1016230107 pmid: 21115818 |
[24] |
Rutschmann S, Kilinc A, Ferrandon D. Cutting edge: The toll pathway is required for resistance to gram-positive bacterial infections in Drosophila[J]. J Immunol, 2002,168(4):1542-1546.
doi: 10.4049/jimmunol.168.4.1542 pmid: 11823479 |
[25] | Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spätzle/Toll/Cactus controls the potent antifungal response in Drosophila adults[J]. Cell, 1996,86(6):973-983. |
[26] |
Zambon RA, Nandakumar M, Vakharia VN, et al. The toll pathway is important for an antiviral response in Drosophila[J]. Proc Natl Acad Sci USA, 2005,102(20):7257-7262.
doi: 10.1073/pnas.0409181102 pmid: 15878994 |
[27] |
Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection[J]. PLoS Pathog, 2008,4(7):e1000098.
doi: 10.1371/journal.ppat.1000098 pmid: 18604274 |
[28] |
Frolet C, Thoma M, Blandin S, et al. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei[J]. Immunity, 2006,25(4):677-685.
doi: 10.1016/j.immuni.2006.08.019 pmid: 17045818 |
[29] | Fullaondo A, Lee SY. Identification of putative miRNA involved in Drosophila melanogaster immune response[J]. Dev Comp Immunol, 2012,36(2):267-273. |
[30] | Bayraktar R, Bertilaccio MTS, Calin GA. The interaction between two worlds: microRNAs and toll-like receptors[J]. Front Immunol, 2019,10:1053. |
[31] |
Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against malaria infection[J]. J Innate Immun, 2014,6(2):169-181.
doi: 10.1159/000353602 pmid: 23988482 |
[32] |
Garver LS, Dong YM, Dimopoulos G. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species[J]. PLoS Pathog, 2009,5(3):e1000335.
doi: 10.1371/journal.ppat.1000335 pmid: 19282971 |
[33] |
Gendrin M, Turlure F, Rodgers FH, et al. The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate Anopheles immunity to bacteria and affect infection by Plasmodium[J]. J Innate Immun, 2017,9(4):333-342.
doi: 10.1159/000452797 pmid: 28494453 |
[34] |
Song X, Wang M, Dong L, et al. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synjournal[J]. PLoS Pathog, 2018,14(2):e1006899.
pmid: 29489896 |
[35] |
Clayton AM, Cirimotich CM, Dong YM, et al. Caudal is a negative regulator of the Anopheles IMD pathway that controls resistance to Plasmodium falciparum infection[J]. Dev Comp Immunol, 2013,39(4):323-332.
doi: 10.1016/j.dci.2012.10.009 pmid: 23178401 |
[36] | Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense[J]. Proc Natl Acad Sci USA, 2009,106(42):17841-17846. |
[37] |
Gupta L, Molina-Cruz A, Kumar S, et al. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae[J]. Cell Host Microbe, 2009,5(5):498-507.
pmid: 19454353 |
[38] |
Bahia AC, Kubota MS, Tempone AJ, et al. The JAK-STAT pathway controls Plasmodium vivax load in early stages of Anopheles aquasalis infection[J]. PLoS Negl Trop Dis, 2011,5(11):e1317.
doi: 10.1371/journal.pntd.0001317 pmid: 22069502 |
[39] |
Carissimo G, Pain A, Belda E, et al. Highly focused transcriptional response of Anopheles coluzziito O’nyongnyong arbovirus during the primary midgut infection[J]. BMC Genomics, 2018,19(1):526.
doi: 10.1186/s12864-018-4918-0 pmid: 29986645 |
[40] | Souvannaseng L, Hun LV, Baker H, et al. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection[J]. PLoS Pathog, 2018,14(11):e1007418. |
[41] |
Brenton AA, Souvannaseng L, Cheung K, et al. Engineered single nucleotide polymorphisms in the mosquito MEK docking site alter Plasmodium berghei development in Anopheles gambiae[J]. Parasit Vectors, 2014,7:287.
doi: 10.1186/1756-3305-7-287 pmid: 24957684 |
[42] |
Wang B, Pakpour N, Napoli E, et al. Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection[J]. Parasit Vectors, 2015,8:424.
doi: 10.1186/s13071-015-1016-x pmid: 26283222 |
[43] | Feng XY. The role of microRNA in development and susceptibility to Plasmodium parasite in Chinese main malaria vector[D]. Beijing: Chinese Center for Disease Control and Prevention, 2018. (in Chinese) |
( 冯欣宇. microRNA在我国主要传疟媒介按蚊发育及对疟原虫易感性中作用的研究[D]. 北京: 中国疾病预防控制中心, 2018.) | |
[44] |
Werling K, Shaw WR, Itoe MA, et al. Steroid hormone function controls non-competitive Plasmodium development in Anopheles[J]. Cell, 2019,177(2):315-325.
doi: 10.1016/j.cell.2019.02.036 pmid: 30929905 |
[45] |
Fu X, Liu P, Dimopoulos G, et al. Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae[J]. PLoS Genet, 2020,16(4):e1008765.
doi: 10.1371/journal.pgen.1008765 pmid: 32339167 |
[46] |
Tarimo BB, Hritzo BA, Law HCH, et al. Ribosomal/nucleolar stress induction regulates tert-Butyl hydroperoxide (tBHP) mediated oxidative stress in Anopheles gambiae midguts[J]. BMC Res Notes, 2019,12(1):1-8.
doi: 10.1186/s13104-018-4038-6 pmid: 30602384 |
[47] | Sinden RE. Plasmodium differentiation in the mosquito[J]. Parassitologia, 1999,41(1/2/3):139-148. |
[48] |
Dimopoulos G. Insect immunity and its implication in mosquito-malaria interactions[J]. Cell Microbiol, 2003,5(1):3-14.
doi: 10.1046/j.1462-5822.2003.00252.x pmid: 12542466 |
[49] |
Allam M, Spillings BL, Abdalla H, et al. Identification and characterization of microRNAs expressed in the African malaria vector Anopheles funestus life stages using high throughput sequencing[J]. Malar J, 2016,15(1):542.
pmid: 27825380 |
[50] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993,75(5):843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621 |
[51] |
Mead EA, Tu Z. Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi[J]. BMC Genomics, 2008,9:244.
doi: 10.1186/1471-2164-9-244 pmid: 18500992 |
[52] |
Jung CH, Hansen MA, Makunin IV, et al. Identification of novel non-coding RNAs using profiles of short sequence reads from next generation sequencing data[J]. BMC Genomics, 2010,11:77.
doi: 10.1186/1471-2164-11-77 pmid: 20113528 |
[53] |
Feng X, Zhou X, Zhou S, et al. Analysis of microRNA profile of Anopheles sinensis by deep sequencing and bioinformatic approaches[J]. Parasit Vectors, 2018,11(1):172.
doi: 10.1186/s13071-018-2734-7 pmid: 29530087 |
[54] | Bryant WB, Mills MK, Olson BJ, et al. Small RNA-seq analysis reveals miRNA expression dynamics across tissues in the malaria vector, Anopheles gambiae[J]. G3 (Bethesda), 2019,9(5):1507-1517. |
[55] | Zhang Y, Zhao B, Roy S, et al. microRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti[J]. Proc Natl Acad Sci USA, 2016,113(33):E4828-E4836. |
[56] |
Arcà B, Colantoni A, Fiorillo C, et al. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions[J]. Sci Rep, 2019,9(1):2955 .
doi: 10.1038/s41598-019-39880-1 pmid: 30814633 |
[57] | He X, Pan WQ. Research progress on miRNA-mediated schistosome-host interactions[J]. Chin J Parasitol Parasit Dis, 2020,38(3):259-262. (in Chinese) |
( 何兴, 潘卫庆. miRNA介导血吸虫和宿主相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(3):259-262.) | |
[58] |
Seok H, Ham J, Jang ES, et al. MicroRNA target recognition: Insights from transcriptome-wide non-canonical interactions[J]. Mol Cells, 2016,39(5):375-381.
doi: 10.14348/molcells.2016.0013 pmid: 27117456 |
[59] |
Hussain M, Taft RJ, Asgari S. An insect virus-encoded microRNA regulates viral replication[J]. J Virol, 2008,82(18):9164-9170.
pmid: 18614632 |
[60] |
Henke JI, Goergen D, Zheng J, et al. microRNA-122 stimulates translation of hepatitis C virus RNA[J]. Embo J, 2008,27(24):3300-3310.
doi: 10.1038/emboj.2008.244 pmid: 19020517 |
[61] |
Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001,294(5543):853-858.
doi: 10.1126/science.1064921 pmid: 11679670 |
[62] | Bushati N, Cohen SM. microRNA functions[J]. Annu Rev Cell Dev Biol, 2007,23(1):175-205. |
[63] |
Hussain M, Frentiu FD, Moreira LA, et al. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti[J]. Proc Natl Acad Sci USA, 2011,108(22):9250-9255.
doi: 10.1073/pnas.1105469108 pmid: 21576469 |
[64] |
Ma F, Liu X, Li D, et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation[J]. J Immunol, 2010,184(11):6053-6059.
doi: 10.4049/jimmunol.0902308 pmid: 20410487 |
[65] |
Min H, Yoon S. Got target? Computational methods for microRNA target prediction and their extension[J]. Exp Mol Med, 2010,42(4):233-244.
doi: 10.3858/emm.2010.42.4.032 pmid: 20177143 |
[66] |
Ling L, Kokoza VA, Zhang C, et al. MicroRNA-277 targets insulin-like peptides 7 and 8 to control lipid metabolism and reproduction in Aedes aegypti mosquitoes[J]. Proc Natl Acad Sci USA, 2017,114(38):E8017-E8024.
doi: 10.1073/pnas.1710970114 pmid: 28874536 |
[67] |
Zhao B, Lucas KJ, Saha TT, et al. MicroRNA-275 targets sarco/endoplasmic Reticulum Ca2+ adenosine triphosphatase (SERCA) to control key functions in the mosquito gut [J]. PLoS Genet, 2017,13(8):e1006943.
doi: 10.1371/journal.pgen.1006943 pmid: 28787446 |
[68] | Lampe L, Levashina EA. The role of microRNAs in Anopheles biology-an emerging research field[J]. Parasite Immunol, 2017,39(2):e12405. |
[69] |
Kistler KE, Vosshall LB, Matthews BJ. Genome-engineering with CRISPR-Cas9 in the mosquito Aedes aegypti[J]. Cell Rep, 2015,11(1):51-60.
doi: 10.1016/j.celrep.2015.03.009 pmid: 25818303 |
[70] |
Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae[J]. Nat Biotechnol, 2016,34(1):78-83.
doi: 10.1038/nbt.3439 pmid: 26641531 |
[1] | 郭帅, 何彪, 高源利, 范永铃, 朱锋, 丁艳, 刘太平, 徐文岳. 鼠疟原虫感染大鼠和小鼠的种特异性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 539-545. |
[2] | 刘华熳, Bikash Giri, 方传涛, 郑亚萌, 吴慧欣, 曾敏浩, 李姗, 程国锋. 日本血吸虫m6A修饰的性别相关circRNA鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 552-558. |
[3] | 周瑞敏, 纪鹏慧, 李素华, 杨成运, 刘颖, 钱丹, 邓艳, 鲁德领, 赵玉玲, 赵东阳, 张红卫. 河南省自赤道几内亚输入的恶性疟原虫抗药性基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 593-600. |
[4] | 梁柯嘉, 刘聪, 李彦霖, 李小鸽, 刘彦, 李贞魁. 疟原虫有性阶段转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 619-624. |
[5] | 王之谦, 王敬文, 宋秀梅. 斯氏按蚊肽聚糖识别蛋白S2调节共生菌稳态的功能分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 397-403. |
[6] | 丁红芸, 董莹, 徐艳春, 邓艳, 刘言, 吴静, 陈梦妮, 张苍林. 云南省输入性间日疟原虫多药抗性蛋白1基因突变多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 404-411. |
[7] | 覃裴溪, 周彩显, 鲁志刚, 张碧瀛, 周涛勋, 胡敏. 粪类圆线虫感染性Ⅲ期幼虫和寄生性雌虫miRNA的鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 412-420. |
[8] | 徐少杰, 陈绅波, 陈军虎. 恶性疟原虫重复散布家族基因转录调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 374-379. |
[9] | 孙军. 疟原虫色素形成的生物学意义[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 209-212. |
[10] | 师伟芳, 田珍灶, 周敬祝, 黄学平, 周雪梅, 吴国艳, 李琼, 廖启浪, 王丹. 2018—2020年贵州省中华按蚊抗药性调查研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 108-111. |
[11] | 贺志权, 胡亚博, 王丹, 张红卫, 刘颖, 杨成运, 钱丹, 纪鹏慧, 蒋甜甜, 鲁德领. 河南省部分地区中华按蚊对杀虫剂抗药性的监测[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 117-120. |
[12] | 李美, 肖宁, 夏志贵. 基于无性期18S rDNA特异性引物检测5种疟原虫qPCR的建立和应用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 36-43. |
[13] | 冯宁宁, 陶薇, 冯彤, 甄素娟, 李军, 刘洪斌. 河北省疟疾消除及消除后媒介种群和密度监测结果分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 806-809. |
[14] | 石天琪, 陈军虎. 间日疟原虫入侵网织红细胞相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 396-401. |
[15] | 葛洁云, 刘蕾, 孙毅凡, 程洋. 疟原虫纳虫空泡膜功能及其相关蛋白的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 402-410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||