[1] | World Health Organization. World Malaria Report 2019[R]. Geneva: WHO, 2019. | [2] | Ranson H, N’guessan R, Lines J, et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?[J]. Trends Parasitol, 2011,27(2):91-98. | [3] | Chaturvedi N, Bharti PK, Tiwari A, et al. Strategies and recent development of transmission-blocking vaccines against Plasmodium falciparum[J]. Indian J Med Res, 2016,143(6):696-711. | [4] | Zheng WQ, Wang JR, Wang H, et al. Truncated Plasmodium berghei putative secreted ookinete protein 7 induces transmission-blocking immunity[J]. Chin J Parasitol Parasit Dis, 2019,37(5):520-524, 531. (in Chinese) | [4] | ( 郑文琪, 王俊瑞, 王华, 等. 伯氏疟原虫推测分泌动合子蛋白7截短片段传播阻断功能的研究[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(5):520-524, 531.) | [5] | Cirimotich CM, Dong Y, Garver LS, et al. Mosquito immune defenses against Plasmodium infection[J]. Dev Comp Immunol, 2010,34(4):387-395. | [6] | Cai Z, Yu X, Cheng G. Progress towards mosquito microbiome on regulating the transmission of mosquito-borne diseases[J]. Chin J Parasitol Parasit Dis, 2019,37(5):603-608. (in Chinese) | [6] | ( 蔡珍, 余茜, 程功. 蚊肠道微生物调节蚊媒传染病传播的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(5):603-608.) | [7] | Vaughan JA, Noden BH, Beier JC. Sporogonic development of cultured Plasmodium falciparum in six species of laboratory-reared Anopheles mosquitoes[J]. Am J Trop Med Hyg, 1994,51(2):233-243. | [8] | Hillyer JF, Barreau C, Vernick KD. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel[J]. Int J Parasitol, 2007,37(6):673-681. | [9] | Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233. | [10] | Liang H, Zen K, Zhang J, et al. New roles for microRNAs in cross-species communication[J]. RNA Biol, 2013,10(3):367-370. | [11] | O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses[J]. Annu Rev Immunol, 2012,30:295-312. | [12] | Winter F, Edaye S, Hüttenhofer A, et al. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion[J]. Nucleic Acids Res, 2007,35(20):6953-6962. | [13] | Biryukova I, Ye T, Levashina E. Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae[J]. BMC Genom, 2014,15(1):1-19. | [14] | Dennison NJ, BenMarzouk-Hidalgo OJ, Dimopoulos G. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota[J]. Dev Comp Immunol, 2015,49(1):170-178. | [15] | Jain S, Rana V, Shrinet J, et al. Blood feeding and Plasmodium infection alters the miRNome of Anopheles stephensi[J]. PLoS One, 2014,9(5):e98402. | [16] | Feng X, Zhou S, Wang J, et al. microRNA profiles and functions in mosquitoes[J]. PLoS Negl Trop Dis, 2018,12(5):e0006463. | [17] | Liu S, Lucas KJ, Roy S, et al. Mosquito-specific microRNA-1174 targets serine hydroxymethyl transferase to control key functions in the gut[J]. Proc Natl Acad Sci USA, 2014,111(40):14460-14465. | [18] | Jain S, Rana V, Tridibes A, et al. Dynamic expression of miRNAs across immature and adult stages of the malaria mosquito Anopheles stephensi[J]. Parasit Vectors, 2015,8:179. | [19] | Jaramillo-Gutierrez G, Molina-Cruz A, Kumar S, et al. The Anopheles gambiae oxidation resistance 1 (OXR1) gene regulates expression of enzymes that detoxify reactive oxygen species[J]. PLoS One, 2010,5(6):e11168. | [20] | Jain S, Shrinet J, Tridibes A, et al. miRNA-mRNA conflux regulating immunity and oxidative stress pathways in the midgut of blood-fed Anopheles stephensi[J]. Noncoding RNA, 2015,1(3):222-245. | [21] | Lampe L, Jentzsch M, Levashina EA. Metabolic balancing by miR-276 shapes the mosquito reproductive cycle and Plasmodium falciparum development[J]. Nat Commun, 2019,10(1):5634. | [22] | Liu W, Hao Z, Huang L, et al. Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection[J]. Parasit Vectors, 2017,10(1):86. | [23] | Bryant B, Macdonald W, Raikhel AS. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti[J]. Proc Natl Acad Sci USA, 2010,107(52):22391-22398. | [24] | Rutschmann S, Kilinc A, Ferrandon D. Cutting edge: The toll pathway is required for resistance to gram-positive bacterial infections in Drosophila[J]. J Immunol, 2002,168(4):1542-1546. | [25] | Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette sp?tzle/Toll/Cactus controls the potent antifungal response in Drosophila adults[J]. Cell, 1996,86(6):973-983. | [26] | Zambon RA, Nandakumar M, Vakharia VN, et al. The toll pathway is important for an antiviral response in Drosophila[J]. Proc Natl Acad Sci USA, 2005,102(20):7257-7262. | [27] | Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection[J]. PLoS Pathog, 2008,4(7):e1000098. | [28] | Frolet C, Thoma M, Blandin S, et al. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei[J]. Immunity, 2006,25(4):677-685. | [29] | Fullaondo A, Lee SY. Identification of putative miRNA involved in Drosophila melanogaster immune response[J]. Dev Comp Immunol, 2012,36(2):267-273. | [30] | Bayraktar R, Bertilaccio MTS, Calin GA. The interaction between two worlds: microRNAs and toll-like receptors[J]. Front Immunol, 2019,10:1053. | [31] | Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against malaria infection[J]. J Innate Immun, 2014,6(2):169-181. | [32] | Garver LS, Dong YM, Dimopoulos G. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species[J]. PLoS Pathog, 2009,5(3):e1000335. | [33] | Gendrin M, Turlure F, Rodgers FH, et al. The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate Anopheles immunity to bacteria and affect infection by Plasmodium[J]. J Innate Immun, 2017,9(4):333-342. | [34] | Song X, Wang M, Dong L, et al. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synjournal[J]. PLoS Pathog, 2018,14(2):e1006899. | [35] | Clayton AM, Cirimotich CM, Dong YM, et al. Caudal is a negative regulator of the Anopheles IMD pathway that controls resistance to Plasmodium falciparum infection[J]. Dev Comp Immunol, 2013,39(4):323-332. | [36] | Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense[J]. Proc Natl Acad Sci USA, 2009,106(42):17841-17846. | [37] | Gupta L, Molina-Cruz A, Kumar S, et al. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae[J]. Cell Host Microbe, 2009,5(5):498-507. | [38] | Bahia AC, Kubota MS, Tempone AJ, et al. The JAK-STAT pathway controls Plasmodium vivax load in early stages of Anopheles aquasalis infection[J]. PLoS Negl Trop Dis, 2011,5(11):e1317. | [39] | Carissimo G, Pain A, Belda E, et al. Highly focused transcriptional response of Anopheles coluzziito O’nyongnyong arbovirus during the primary midgut infection[J]. BMC Genomics, 2018,19(1):526. | [40] | Souvannaseng L, Hun LV, Baker H, et al. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection[J]. PLoS Pathog, 2018,14(11):e1007418. | [41] | Brenton AA, Souvannaseng L, Cheung K, et al. Engineered single nucleotide polymorphisms in the mosquito MEK docking site alter Plasmodium berghei development in Anopheles gambiae[J]. Parasit Vectors, 2014,7:287. | [42] | Wang B, Pakpour N, Napoli E, et al. Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection[J]. Parasit Vectors, 2015,8:424. | [43] | Feng XY. The role of microRNA in development and susceptibility to Plasmodium parasite in Chinese main malaria vector[D]. Beijing: Chinese Center for Disease Control and Prevention, 2018. (in Chinese) | [43] | ( 冯欣宇. microRNA在我国主要传疟媒介按蚊发育及对疟原虫易感性中作用的研究[D]. 北京: 中国疾病预防控制中心, 2018.) | [44] | Werling K, Shaw WR, Itoe MA, et al. Steroid hormone function controls non-competitive Plasmodium development in Anopheles[J]. Cell, 2019,177(2):315-325. | [45] | Fu X, Liu P, Dimopoulos G, et al. Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae[J]. PLoS Genet, 2020,16(4):e1008765. | [46] | Tarimo BB, Hritzo BA, Law HCH, et al. Ribosomal/nucleolar stress induction regulates tert-Butyl hydroperoxide (tBHP) mediated oxidative stress in Anopheles gambiae midguts[J]. BMC Res Notes, 2019,12(1):1-8. | [47] | Sinden RE. Plasmodium differentiation in the mosquito[J]. Parassitologia, 1999,41(1/2/3):139-148. | [48] | Dimopoulos G. Insect immunity and its implication in mosquito-malaria interactions[J]. Cell Microbiol, 2003,5(1):3-14. | [49] | Allam M, Spillings BL, Abdalla H, et al. Identification and characterization of microRNAs expressed in the African malaria vector Anopheles funestus life stages using high throughput sequencing[J]. Malar J, 2016,15(1):542. | [50] | Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993,75(5):843-854. | [51] | Mead EA, Tu Z. Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi[J]. BMC Genomics, 2008,9:244. | [52] | Jung CH, Hansen MA, Makunin IV, et al. Identification of novel non-coding RNAs using profiles of short sequence reads from next generation sequencing data[J]. BMC Genomics, 2010,11:77. | [53] | Feng X, Zhou X, Zhou S, et al. Analysis of microRNA profile of Anopheles sinensis by deep sequencing and bioinformatic approaches[J]. Parasit Vectors, 2018,11(1):172. | [54] | Bryant WB, Mills MK, Olson BJ, et al. Small RNA-seq analysis reveals miRNA expression dynamics across tissues in the malaria vector, Anopheles gambiae[J]. G3 (Bethesda), 2019,9(5):1507-1517. | [55] | Zhang Y, Zhao B, Roy S, et al. microRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti[J]. Proc Natl Acad Sci USA, 2016,113(33):E4828-E4836. | [56] | Arcà B, Colantoni A, Fiorillo C, et al. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions[J]. Sci Rep, 2019,9(1):2955 . | [57] | He X, Pan WQ. Research progress on miRNA-mediated schistosome-host interactions[J]. Chin J Parasitol Parasit Dis, 2020,38(3):259-262. (in Chinese) | [57] | ( 何兴, 潘卫庆. miRNA介导血吸虫和宿主相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020,38(3):259-262.) | [58] | Seok H, Ham J, Jang ES, et al. MicroRNA target recognition: Insights from transcriptome-wide non-canonical interactions[J]. Mol Cells, 2016,39(5):375-381. | [59] | Hussain M, Taft RJ, Asgari S. An insect virus-encoded microRNA regulates viral replication[J]. J Virol, 2008,82(18):9164-9170. | [60] | Henke JI, Goergen D, Zheng J, et al. microRNA-122 stimulates translation of hepatitis C virus RNA[J]. Embo J, 2008,27(24):3300-3310. | [61] | Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001,294(5543):853-858. | [62] | Bushati N, Cohen SM. microRNA functions[J]. Annu Rev Cell Dev Biol, 2007,23(1):175-205. | [63] | Hussain M, Frentiu FD, Moreira LA, et al. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti[J]. Proc Natl Acad Sci USA, 2011,108(22):9250-9255. | [64] | Ma F, Liu X, Li D, et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation[J]. J Immunol, 2010,184(11):6053-6059. | [65] | Min H, Yoon S. Got target? Computational methods for microRNA target prediction and their extension[J]. Exp Mol Med, 2010,42(4):233-244. | [66] | Ling L, Kokoza VA, Zhang C, et al. MicroRNA-277 targets insulin-like peptides 7 and 8 to control lipid metabolism and reproduction in Aedes aegypti mosquitoes[J]. Proc Natl Acad Sci USA, 2017,114(38):E8017-E8024. | [67] | Zhao B, Lucas KJ, Saha TT, et al. MicroRNA-275 targets sarco/endoplasmic Reticulum Ca2+ adenosine triphosphatase (SERCA) to control key functions in the mosquito gut [J]. PLoS Genet, 2017,13(8):e1006943. | [68] | Lampe L, Levashina EA. The role of microRNAs in Anopheles biology-an emerging research field[J]. Parasite Immunol, 2017,39(2):e12405. | [69] | Kistler KE, Vosshall LB, Matthews BJ. Genome-engineering with CRISPR-Cas9 in the mosquito Aedes aegypti[J]. Cell Rep, 2015,11(1):51-60. | [70] | Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae[J]. Nat Biotechnol, 2016,34(1):78-83. |
|