[1] |
World Health Organization, Food and Agriculture Organization of the United Nations. Risk-based examples and approach for control of Trichinella spp. and Taenia saginata in meat[R]. Rome: WHO & FAO, 2020: 4-34.
|
[2] |
Cheng G, Zhang ZF, Wang YX, et al. Trichinella spiralis-secreted products promote collagen capsule formation through TGF-β1/Smad3 pathway[J]. Int J Mol Sci, 2023, 24(19): 15003-15014.
|
[3] |
Wu LQ, Yin WH, Wen JT, et al. Excretory/secretory products from Trichinella spiralis adult worms ameliorate myocardial infarction by inducing M2 macrophage polarization in a mouse model[J]. Parasit Vectors, 2023, 16(1): 362-378.
|
[4] |
Wang J, Tang B, You XH, et al. Trichinella spiralis excretory/secretory products from adult worms inhibit NETosis and regulate the production of cytokines from neutrophils[J]. Parasit Vectors, 2023, 16(1): 374-386.
|
[5] |
Ilic N, Bojic-Trbojevic Z, Lundström-Stadelmann B, et al. Immunomodulatory components of Trichinella spiralis excretory-secretory products with lactose-binding specificity[J]. EXCLI J, 2022, 21: 793-813.
|
[6] |
Zhou XX, Xie F, Wang L, et al. The function and clinical application of extracellular vesicles in innate immune regulation[J]. Cell Mol Immunol, 2020, 17(4): 323-334.
doi: 10.1038/s41423-020-0391-1
pmid: 32203193
|
[7] |
Ofir-Birin Y, Regev-Rudzki N. Extracellular vesicles in parasite survival[J]. Science, 2019, 363(6429): 817-818.
doi: 10.1126/science.aau4666
pmid: 30792291
|
[8] |
Sharon M, Regev-Rudzki N. Cell communication and protein degradation: all in one parasitic package[J]. J Extracell Vesicles, 2021, 10(9): e12116-e12120.
|
[9] |
Kosanović M, Cvetković J, Gruden-Movsesijan A, et al. Trichinella spiralis muscle larvae release extracellular vesicles with immunomodulatory properties[J]. Parasite Immunol, 2019, 41(10): e12665-e12669.
|
[10] |
Gao X, Yang Y, Liu XL, et al. Extracellular vesicles from Trichinella spiralis: proteomic analysis and protective immunity[J]. PLoS Negl Trop Dis, 2022, 16(6): e0010528-e0010544.
|
[11] |
Gao X, Yang Y, Liu L, et al. Isolation of exosomes from Trichinella spiralis muscle larvae and identification of small RNAs[J]. Chin J Zoonoses, 2020, 36(4): 261-266. (in Chinese)
|
|
(高欣, 杨勇, 刘蕾, 等. 旋毛虫肌幼虫期外泌体的分离和小RNA鉴定[J]. 中国人兽共患病学报, 2020, 36(4): 261-266.)
|
[12] |
Gao X, Yang Y, Liu XL, et al. Extracellular vesicles derived from Trichinella spiralis prevent colitis by inhibiting M1 macrophage polarization[J]. Acta Trop, 2021, 213: 105761-105768.
|
[13] |
Yang Y, Liu L, Liu XL, et al. Extracellular vesicles derived from Trichinella spiralis muscle larvae ameliorate TNBS-induced colitis in mice[J]. Front Immunol, 2020, 11: 1174-1189.
|
[14] |
Wu J, Liao Y, Li DH, et al. Extracellular vesicles derived from Trichinella Spiralis larvae promote the polarization of macrophages to M2b type and inhibit the activation of fibroblasts[J]. Front Immunol, 2022, 13: 974332-974342.
|
[15] |
Wang RB, Zhang YH, Zhen JB, et al. Effects of exosomes derived from Trichinella spiralis infective larvae on intestinal epithelial barrier function[J]. VetRes, 2022, 53(1): 87-97.
|
[16] |
Zhen JB, Zheng LS, Yang Y, et al. Comparison of collection methods of Trichinella spiralis bodies in various developmental stages[J]. Chin Vet Sci, 2022, 52(12): 1558-1567. (in Chinese)
|
|
(甄晶博, 郑芦珊, 杨莹, 等. 旋毛虫不同虫期收集方法的比较[J]. 中国兽医科学, 2022, 52(12): 1558-1567.)
|
[17] |
Zhao X, Shen LJ. Study of external culture and collection method of Trichinella spiralis newborn larvae in different ages[J]. J Pathog Biol, 2008, 3(9): 697-698, 725. (in Chinese)
|
|
(赵雪, 申丽洁. 不同时龄旋毛虫新生幼虫的体外培养和收集方法研究[J]. 中国病原生物学杂志, 2008, 3(9): 697-698, 725.)
|
[18] |
Kornilov R, Puhka M, Mannerström B, et al. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum[J]. J Extracell Vesicles, 2018, 7(1): 1422674-1422687.
|
[19] |
Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches[J]. J Extracell Vesicles, 2024, 13(2): e12404-e12487.
|
[20] |
Drurey C, Maizels RM. Helminth extracellular vesicles: interactions with the host immune system[J]. Mol Immunol, 2021, 137: 124-133.
doi: 10.1016/j.molimm.2021.06.017
pmid: 34246032
|
[21] |
Khosravi M, Mirsamadi ES, Mirjalali H, et al. Isolation and functions of extracellular vesicles derived from parasites: the promise of a new era in immunotherapy, vaccination, and diagnosis[J]. Int J Nanomedicine, 2020, 15: 2957-2969.
|
[22] |
Hao HN, Cheng YK, Zhang R, et al. Immunoproteomic analysis on the soluble antigens of Trichinella spiralis newborn larvae[J]. Chin J Parasitol Parasit Dis, 2023, 41(2): 176-182, 191. (in Chinese)
|
|
(郝会囡, 程永康, 张茹, 等. 旋毛虫新生幼虫可溶性抗原的免疫蛋白组学分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 176-182, 191.)
doi: 10.12140/j.issn.1000-7423.2023.02.008
|
[23] |
Ashour DS, Ibrahim FMK, Elshamy AM, et al. Trichinella spiralis-derived extracellular vesicles induce a protective immunity against larval challenge in mice[J]. Pathog Dis, 2022, 80(1): ftac040.
|
[24] |
Li CY, Li C, Xu FY, et al. Identification of antigens in the Trichinella spiralis extracellular vesicles for serological detection of early stage infection in swine[J]. Parasit Vectors, 2023, 16(1): 387-398.
|
[25] |
Liu YD, Liu JC, Wang N, et al. Quantitative label-free proteomic analysis of excretory-secretory proteins in different developmental stages of Trichinella spiralis[J]. Vet Res, 2024, 55(1): 4.
|
[26] |
Li YE, Gu XB. A review on the biological functions of 14-3-3 in parasites[J]. J Sichuan Agric Univ, 2023, 41(6): 1134-1139. (in Chinese)
|
|
(李艳娥, 古小彬. 寄生虫14-3-3蛋白的生物学功能研究进展[J]. 四川农业大学学报, 2023, 41(6): 1134-1139.)
|
[27] |
Ji H, Wang JF, Guo JR, et al. Progress in the biological function of alpha-enolase[J]. Anim Nutr, 2016, 2(1): 12-17.
doi: 10.1016/j.aninu.2016.02.005
pmid: 29767008
|
[28] |
Landa A, Navarro L, Ochoa-Sánchez A, et al. Taenia solium and Taenia crassiceps: miRNomes of the larvae and effects of miR-10-5p and let-7-5p on murine peritoneal macrophages[J]. Biosci Rep, 2019, 39(11): BSR20190152.
|
[29] |
Wang LQ, Liu TL, Chen GL, et al. Exosomal microRNA let-7-5p from Taenia pisiformis cysticercus prompted macrophage to M2 polarization through inhibiting the expression of C/EBP δ[J]. Microorganisms, 2021, 9(7): 1403-1414.
|