中国寄生虫学与寄生虫病杂志 ›› 2020, Vol. 38 ›› Issue (3): 259-262.doi: 10.12140/j.issn.1000-7423.2020.03.001
收稿日期:
2020-04-21
出版日期:
2020-06-30
发布日期:
2020-07-07
通讯作者:
何兴
作者简介:
何兴(1985-),男,副教授,主要从事血吸虫病肝纤维化研究。
基金资助:
Received:
2020-04-21
Online:
2020-06-30
Published:
2020-07-07
Contact:
Xing HE
Supported by:
摘要:
血吸虫病是一种严重但被忽视的热带传染病,全世界感染血吸虫的人数超过2亿。了解血吸虫和宿主相互作用的机制是有效控制和最终消除血吸虫病的关键。miRNA是一种内源性的非编码小RNA,主要在转录后调控基因的功能。最近,越来越多的证据表明,miRNA是血吸虫和宿主相互作用的关键调控因子。本文综述了miRNA介导血吸虫和宿主相互作用的研究进展。
中图分类号:
何兴, 潘卫庆. miRNA介导血吸虫和宿主相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(3): 259-262.
HE Xing, PAN Wei-qing. Research progress on miRNA-mediated schistosome-host interactions[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2020, 38(3): 259-262.
[1] |
Colley DG, Bustinduy AL, Secor WE, et al. Human schistosomiasis[J]. Lancet, 2014,383(9936):2253-2264.
doi: 10.1016/S0140-6736(13)61949-2 pmid: 24698483 |
[2] |
Mutapi F, Maizels R, Fenwick A, et al. Human schistosomiasis in the post mass drug administration era[J]. Lancet Infect Dis, 2017,17(2):e42-e48.
doi: 10.1016/S1473-3099(16)30475-3 pmid: 27988094 |
[3] |
Merrifield M, Hotez PJ, Beaumier CM, et al. Advancing a vaccine to prevent human schistosomiasis[J]. Vaccine, 2016,34(26):2988-2991.
doi: 10.1016/j.vaccine.2016.03.079 pmid: 27036511 |
[4] | Sun YJ, Li ZQ, Lv FL. Research progress on the immunopathological mechanism of Schistosoma japonicum egg-induced granuloma[J]. Chin J Parasitol Parasit Dis, 2019,37(6):713-717. (in Chinese) |
( 孙钰浚, 李钊琪, 吕芳丽. 日本血吸虫虫卵肉芽肿免疫病理机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(6):713-717.) | |
[5] |
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233.
doi: 10.1016/j.cell.2009.01.002 pmid: 19167326 |
[6] |
Xue XY, Sun J, Zhang QF, et al. Identification and characterization of novel microRNAs from Schistosoma japonicum[J]. PLoS One, 2008,3(12):e4034.
doi: 10.1371/journal.pone.0004034 pmid: 19107204 |
[7] |
Wang ZX, Xue XY, Sun J, et al. An “in-depth” description of the small non-coding RNA population of Schistosoma japonicum schistosomulum[J]. PLoS Negl Trop Dis, 2010,4(2):e596.
doi: 10.1371/journal.pntd.0000596 pmid: 20161724 |
[8] |
Cai PF, Gobert GN, McManus DP. MicroRNAs in parasitic helminthiases: current status and future perspectives[J]. Trends Parasitol, 2016,32(1):71-86.
doi: 10.1016/j.pt.2015.09.003 pmid: 26489492 |
[9] |
Cai PF, Hou N, Piao XY, et al. Profiles of small non-coding RNAs in Schistosoma japonicum during development[J]. PLoS Negl Trop Dis, 2011,5(8):e1256.
doi: 10.1371/journal.pntd.0001256 |
[10] |
Zhu LH, Zhao JP, Wang JB, et al. MicroRNAs are involved in the regulation of ovary development in the pathogenic blood fluke Schistosoma japonicum[J]. PLoS Pathog, 2016,12(2):e1005423.
doi: 10.1371/journal.ppat.1005423 pmid: 26871705 |
[11] |
He X, Xie J, Zhang DM, et al. Recombinant adeno-associated virus-mediated inhibition of microRNA-21 protects mice against the lethal schistosome infection by repressing both IL-13 and transforming growth factor beta 1 pathways[J]. Hepatology, 2015,61(6):2008-2017.
doi: 10.1002/hep.27671 pmid: 25546547 |
[12] |
He X, Sun Y, Lei NH, et al. MicroRNA-351 promotes schistosomiasis-induced hepatic fibrosis by targeting the vitamin D receptor[J]. Proc Natl Acad Sci USA, 2018,115(1):180-185.
doi: 10.1073/pnas.1715965115 pmid: 29255036 |
[13] |
He X, Xie J, Wang YG, et al. Down-regulation of microRNA-203-3p initiates type 2 pathology during schistosome infection via elevation of interleukin-33[J]. PLoS Pathog, 2018,14(3):e1006957.
doi: 10.1371/journal.ppat.1006957 pmid: 29554131 |
[14] |
Han HX, Peng JB, Hong Y, et al. MicroRNA expression profile in different tissues of BALB/c mice in the early phase of Schistosoma japonicum infection[J]. Mol Biochem Parasitol, 2013,188(1):1-9.
doi: 10.1016/j.molbiopara.2013.02.001 pmid: 23415751 |
[15] |
Cai PF, Piao XY, Liu S, et al. MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection[J]. PLoS One, 2013,8(6):e67037.
doi: 10.1371/journal.pone.0067037 pmid: 23825609 |
[16] |
Han HX, Peng JB, Hong Y, et al. Comparison of the differential expression miRNAs in Wistar rats before and 10 days after S. japonicum infection[J]. Parasit Vectors, 2013,6:120.
doi: 10.1186/1756-3305-6-120 pmid: 23617945 |
[17] | Liu X, Qi YF, Yu YR. Effects of soluble egg antigens on hepatic stellate cells in the progression of schistosomiasis-associated liver fibrosis[J]. Chin J Parasitol Parasit Dis, 2019,37(2):218-222. (in Chinese) |
( 刘欣, 齐永芬, 鱼艳荣. 血吸虫病肝纤维化中可溶性虫卵抗原对肝星状细胞的作用[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):218-222.) | |
[18] | Sun Y, Zheng KY, He X, et al. The phenotype changes of Kupffer cells in the progression of hepatic schistosomiasis japonica[J]. Chin J Parasitol Parasit Dis, 2017,35(3):224-229. (in Chinese) |
( 孙悦, 郑葵阳, 何兴, 等. 库普弗细胞在小鼠日本血吸虫肝病发展过程中的表型变化[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(3):224-229.) | |
[19] |
Xu FY, Liu CW, Zhou DD, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016,64(3):157-167.
doi: 10.1369/0022155415627681 pmid: 26747705 |
[20] |
Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response[J]. Cell, 2013,153(3):601-613.
pmid: 23622244 |
[21] |
He X, Tang R, Sun Y, et al. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis[J]. EBioMedicine, 2016,13:339-347.
doi: 10.1016/j.ebiom.2016.10.024 pmid: 27780686 |
[22] |
Zhu DD, He X, Duan YN, et al. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum[J]. Parasit Vectors, 2014,7:148.
doi: 10.1186/1756-3305-7-148 pmid: 24685242 |
[23] |
Chen X, Ba Y, Ma LJ, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008,18(10):997-1006.
doi: 10.1038/cr.2008.282 pmid: 18766170 |
[24] |
Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007,9(6):654-659.
doi: 10.1038/ncb1596 pmid: 17486113 |
[25] |
Sarkies P, Miska EA. Molecular biology. Is there social RNA?[J]. Science, 2013,341(6145):467-468.
doi: 10.1126/science.1243175 pmid: 23908213 |
[26] |
Wang YG, Fan XB, Lei NH, et al. A microRNA derived from Schistosoma japonicum promotes schistosomiasis hepatic fibrosis by targeting host secreted frizzled-related protein 1[J]. Front Cell Infect Microbiol, 2020,10:101.
pmid: 32232014 |
[27] |
He X, Wang YG, Fan XB, et al. A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor Ⅲ[J]. J Hepatol, 2020,72(3):519-527.
doi: 10.1016/j.jhep.2019.10.029 pmid: 31738999 |
[28] |
Liu JT, Zhu LH, Wang JB, et al. Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism[J]. PLoS Pathog, 2019,15(6):e1007817.
doi: 10.1371/journal.ppat.1007817 pmid: 31163079 |
[29] |
Meningher T, Barsheshet Y, Ofir-Birin Y, et al. Schistosomal extracellular vesicle-enclosed miRNAs modulate host T helper cell differentiation[J]. EMBO Rep, 2020,21(1):e47882.
doi: 10.15252/embr.201947882 pmid: 31825165 |
[30] |
LaMonte G, Philip N, Reardon J, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance[J]. Cell Host Microbe, 2012,12(2):187-199.
doi: 10.1016/j.chom.2012.06.007 |
[31] |
Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1[J]. Science, 2002,295(5564):2456-2459.
doi: 10.1126/science.1068836 pmid: 11834782 |
[1] | 谭潇, 朱琪, 刘众齐, 李佳, 彭丁晋. 日本血吸虫Sj26gst mRNA候选疫苗的免疫原性研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 546-551. |
[2] | 刘华熳, Bikash Giri, 方传涛, 郑亚萌, 吴慧欣, 曾敏浩, 李姗, 程国锋. 日本血吸虫m6A修饰的性别相关circRNA鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 552-558. |
[3] | 覃裴溪, 周彩显, 鲁志刚, 张碧瀛, 周涛勋, 胡敏. 粪类圆线虫感染性Ⅲ期幼虫和寄生性雌虫miRNA的鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 412-420. |
[4] | 兰炜明, 徐慧, 徐银, 邱婷婷, 谢曙英, 邓凤林, 胡绍良, 刘欢, 郭家钢, 曾小军. 荧光定量PCR用于日本血吸虫感染高危环境早期预警的研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 502-505. |
[5] | 李婕, 文雨松, 李召军. 我国旅游开发对血吸虫病防治的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 355-360. |
[6] | 陈琳, 朱继峰, 邱竞帆, 徐志鹏, 张东辉, 陈璐, 何健, 李伟, 杨坤, 季旻珺. 寓全健康理念于血吸虫病防控虚拟仿真项目建设[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 81-84. |
[7] | 栗根, 孙同骏, 钱亚云, 李倩倩, 杨小迪. 血吸虫及其衍生物调节免疫失调性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 85-91. |
[8] | 王晓玲, 张卫, 易存, 陈祥宇, 杨文彬, 徐斌, 胡薇. SjGPR89蛋白对日本血吸虫生长发育的影响[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 701-707. |
[9] | 陈果, 朱丹丹, 段义农. 免疫调节蛋白B7家族在日本血吸虫感染免疫调节中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 774-779. |
[10] | 严晓岚, 闻礼永, 熊彦红, 郑彬, 张剑锋, 汪天平, 俞丽玲, 许国章, 林丹丹, 周晓农. 《日本血吸虫抗体检测标准 酶联免疫吸附试验法》解读[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 798-800. |
[11] | 汤宪时, 季文翔, 熊春蓉, 周永华, 许永良, 仝德胜. 晚期日本血吸虫感染小鼠焦虑样行为学研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 622-628. |
[12] | 冯家鑫, 公衍峰, 罗卓韦, 汪伟, 曹淳力, 许静, 李石柱. 我国血吸虫病防治策略的科学基础与“十四五”展望[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 428-435. |
[13] | 王吉鹏. 驱动血吸虫生长发育的干细胞研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 436-440. |
[14] | 梁乐, 张璟, 沈玉娟, 胡媛, 曹建平. 环鸟苷酸腺苷酸促日本血吸虫感染小鼠肝虫卵肉芽肿形成及纤维化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 441-445. |
[15] | 李腾, 沈玉娟, 崔丽君, 刘华, 胡媛, 姜岩岩, 曹建平. 长链非编码RNA NEAT1通过调控IL-8参与肠上皮细胞抗隐孢子虫反应[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 487-492. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 633
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 582
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||