[1] |
Colley DG, Bustinduy AL, Secor WE, et al. Human schistosomiasis[J]. Lancet, 2014,383(9936):2253-2264.
doi: 10.1016/S0140-6736(13)61949-2
pmid: 24698483
|
[2] |
Mutapi F, Maizels R, Fenwick A, et al. Human schistosomiasis in the post mass drug administration era[J]. Lancet Infect Dis, 2017,17(2):e42-e48.
doi: 10.1016/S1473-3099(16)30475-3
pmid: 27988094
|
[3] |
Merrifield M, Hotez PJ, Beaumier CM, et al. Advancing a vaccine to prevent human schistosomiasis[J]. Vaccine, 2016,34(26):2988-2991.
doi: 10.1016/j.vaccine.2016.03.079
pmid: 27036511
|
[4] |
Sun YJ, Li ZQ, Lv FL. Research progress on the immunopathological mechanism of Schistosoma japonicum egg-induced granuloma[J]. Chin J Parasitol Parasit Dis, 2019,37(6):713-717. (in Chinese)
|
|
( 孙钰浚, 李钊琪, 吕芳丽. 日本血吸虫虫卵肉芽肿免疫病理机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(6):713-717.)
|
[5] |
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233.
doi: 10.1016/j.cell.2009.01.002
pmid: 19167326
|
[6] |
Xue XY, Sun J, Zhang QF, et al. Identification and characterization of novel microRNAs from Schistosoma japonicum[J]. PLoS One, 2008,3(12):e4034.
doi: 10.1371/journal.pone.0004034
pmid: 19107204
|
[7] |
Wang ZX, Xue XY, Sun J, et al. An “in-depth” description of the small non-coding RNA population of Schistosoma japonicum schistosomulum[J]. PLoS Negl Trop Dis, 2010,4(2):e596.
doi: 10.1371/journal.pntd.0000596
pmid: 20161724
|
[8] |
Cai PF, Gobert GN, McManus DP. MicroRNAs in parasitic helminthiases: current status and future perspectives[J]. Trends Parasitol, 2016,32(1):71-86.
doi: 10.1016/j.pt.2015.09.003
pmid: 26489492
|
[9] |
Cai PF, Hou N, Piao XY, et al. Profiles of small non-coding RNAs in Schistosoma japonicum during development[J]. PLoS Negl Trop Dis, 2011,5(8):e1256.
doi: 10.1371/journal.pntd.0001256
|
[10] |
Zhu LH, Zhao JP, Wang JB, et al. MicroRNAs are involved in the regulation of ovary development in the pathogenic blood fluke Schistosoma japonicum[J]. PLoS Pathog, 2016,12(2):e1005423.
doi: 10.1371/journal.ppat.1005423
pmid: 26871705
|
[11] |
He X, Xie J, Zhang DM, et al. Recombinant adeno-associated virus-mediated inhibition of microRNA-21 protects mice against the lethal schistosome infection by repressing both IL-13 and transforming growth factor beta 1 pathways[J]. Hepatology, 2015,61(6):2008-2017.
doi: 10.1002/hep.27671
pmid: 25546547
|
[12] |
He X, Sun Y, Lei NH, et al. MicroRNA-351 promotes schistosomiasis-induced hepatic fibrosis by targeting the vitamin D receptor[J]. Proc Natl Acad Sci USA, 2018,115(1):180-185.
doi: 10.1073/pnas.1715965115
pmid: 29255036
|
[13] |
He X, Xie J, Wang YG, et al. Down-regulation of microRNA-203-3p initiates type 2 pathology during schistosome infection via elevation of interleukin-33[J]. PLoS Pathog, 2018,14(3):e1006957.
doi: 10.1371/journal.ppat.1006957
pmid: 29554131
|
[14] |
Han HX, Peng JB, Hong Y, et al. MicroRNA expression profile in different tissues of BALB/c mice in the early phase of Schistosoma japonicum infection[J]. Mol Biochem Parasitol, 2013,188(1):1-9.
doi: 10.1016/j.molbiopara.2013.02.001
pmid: 23415751
|
[15] |
Cai PF, Piao XY, Liu S, et al. MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection[J]. PLoS One, 2013,8(6):e67037.
doi: 10.1371/journal.pone.0067037
pmid: 23825609
|
[16] |
Han HX, Peng JB, Hong Y, et al. Comparison of the differential expression miRNAs in Wistar rats before and 10 days after S. japonicum infection[J]. Parasit Vectors, 2013,6:120.
doi: 10.1186/1756-3305-6-120
pmid: 23617945
|
[17] |
Liu X, Qi YF, Yu YR. Effects of soluble egg antigens on hepatic stellate cells in the progression of schistosomiasis-associated liver fibrosis[J]. Chin J Parasitol Parasit Dis, 2019,37(2):218-222. (in Chinese)
|
|
( 刘欣, 齐永芬, 鱼艳荣. 血吸虫病肝纤维化中可溶性虫卵抗原对肝星状细胞的作用[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):218-222.)
|
[18] |
Sun Y, Zheng KY, He X, et al. The phenotype changes of Kupffer cells in the progression of hepatic schistosomiasis japonica[J]. Chin J Parasitol Parasit Dis, 2017,35(3):224-229. (in Chinese)
|
|
( 孙悦, 郑葵阳, 何兴, 等. 库普弗细胞在小鼠日本血吸虫肝病发展过程中的表型变化[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(3):224-229.)
|
[19] |
Xu FY, Liu CW, Zhou DD, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016,64(3):157-167.
doi: 10.1369/0022155415627681
pmid: 26747705
|
[20] |
Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response[J]. Cell, 2013,153(3):601-613.
pmid: 23622244
|
[21] |
He X, Tang R, Sun Y, et al. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis[J]. EBioMedicine, 2016,13:339-347.
doi: 10.1016/j.ebiom.2016.10.024
pmid: 27780686
|
[22] |
Zhu DD, He X, Duan YN, et al. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum[J]. Parasit Vectors, 2014,7:148.
doi: 10.1186/1756-3305-7-148
pmid: 24685242
|
[23] |
Chen X, Ba Y, Ma LJ, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008,18(10):997-1006.
doi: 10.1038/cr.2008.282
pmid: 18766170
|
[24] |
Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007,9(6):654-659.
doi: 10.1038/ncb1596
pmid: 17486113
|
[25] |
Sarkies P, Miska EA. Molecular biology. Is there social RNA?[J]. Science, 2013,341(6145):467-468.
doi: 10.1126/science.1243175
pmid: 23908213
|
[26] |
Wang YG, Fan XB, Lei NH, et al. A microRNA derived from Schistosoma japonicum promotes schistosomiasis hepatic fibrosis by targeting host secreted frizzled-related protein 1[J]. Front Cell Infect Microbiol, 2020,10:101.
pmid: 32232014
|
[27] |
He X, Wang YG, Fan XB, et al. A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor Ⅲ[J]. J Hepatol, 2020,72(3):519-527.
doi: 10.1016/j.jhep.2019.10.029
pmid: 31738999
|
[28] |
Liu JT, Zhu LH, Wang JB, et al. Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism[J]. PLoS Pathog, 2019,15(6):e1007817.
doi: 10.1371/journal.ppat.1007817
pmid: 31163079
|
[29] |
Meningher T, Barsheshet Y, Ofir-Birin Y, et al. Schistosomal extracellular vesicle-enclosed miRNAs modulate host T helper cell differentiation[J]. EMBO Rep, 2020,21(1):e47882.
doi: 10.15252/embr.201947882
pmid: 31825165
|
[30] |
LaMonte G, Philip N, Reardon J, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance[J]. Cell Host Microbe, 2012,12(2):187-199.
doi: 10.1016/j.chom.2012.06.007
|
[31] |
Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1[J]. Science, 2002,295(5564):2456-2459.
doi: 10.1126/science.1068836
pmid: 11834782
|