[1] | Colley DG, Bustinduy AL, Secor WE, et al. Human schistosomiasis[J]. Lancet, 2014,383(9936):2253-2264. | [2] | Mutapi F, Maizels R, Fenwick A, et al. Human schistosomiasis in the post mass drug administration era[J]. Lancet Infect Dis, 2017,17(2):e42-e48. | [3] | Merrifield M, Hotez PJ, Beaumier CM, et al. Advancing a vaccine to prevent human schistosomiasis[J]. Vaccine, 2016,34(26):2988-2991. | [4] | Sun YJ, Li ZQ, Lv FL. Research progress on the immunopathological mechanism of Schistosoma japonicum egg-induced granuloma[J]. Chin J Parasitol Parasit Dis, 2019,37(6):713-717. (in Chinese) | [4] | ( 孙钰浚, 李钊琪, 吕芳丽. 日本血吸虫虫卵肉芽肿免疫病理机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(6):713-717.) | [5] | Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233. | [6] | Xue XY, Sun J, Zhang QF, et al. Identification and characterization of novel microRNAs from Schistosoma japonicum[J]. PLoS One, 2008,3(12):e4034. | [7] | Wang ZX, Xue XY, Sun J, et al. An “in-depth” description of the small non-coding RNA population of Schistosoma japonicum schistosomulum[J]. PLoS Negl Trop Dis, 2010,4(2):e596. | [8] | Cai PF, Gobert GN, McManus DP. MicroRNAs in parasitic helminthiases: current status and future perspectives[J]. Trends Parasitol, 2016,32(1):71-86. | [9] | Cai PF, Hou N, Piao XY, et al. Profiles of small non-coding RNAs in Schistosoma japonicum during development[J]. PLoS Negl Trop Dis, 2011,5(8):e1256. | [10] | Zhu LH, Zhao JP, Wang JB, et al. MicroRNAs are involved in the regulation of ovary development in the pathogenic blood fluke Schistosoma japonicum[J]. PLoS Pathog, 2016,12(2):e1005423. | [11] | He X, Xie J, Zhang DM, et al. Recombinant adeno-associated virus-mediated inhibition of microRNA-21 protects mice against the lethal schistosome infection by repressing both IL-13 and transforming growth factor beta 1 pathways[J]. Hepatology, 2015,61(6):2008-2017. | [12] | He X, Sun Y, Lei NH, et al. MicroRNA-351 promotes schistosomiasis-induced hepatic fibrosis by targeting the vitamin D receptor[J]. Proc Natl Acad Sci USA, 2018,115(1):180-185. | [13] | He X, Xie J, Wang YG, et al. Down-regulation of microRNA-203-3p initiates type 2 pathology during schistosome infection via elevation of interleukin-33[J]. PLoS Pathog, 2018,14(3):e1006957. | [14] | Han HX, Peng JB, Hong Y, et al. MicroRNA expression profile in different tissues of BALB/c mice in the early phase of Schistosoma japonicum infection[J]. Mol Biochem Parasitol, 2013,188(1):1-9. | [15] | Cai PF, Piao XY, Liu S, et al. MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection[J]. PLoS One, 2013,8(6):e67037. | [16] | Han HX, Peng JB, Hong Y, et al. Comparison of the differential expression miRNAs in Wistar rats before and 10 days after S. japonicum infection[J]. Parasit Vectors, 2013,6:120. | [17] | Liu X, Qi YF, Yu YR. Effects of soluble egg antigens on hepatic stellate cells in the progression of schistosomiasis-associated liver fibrosis[J]. Chin J Parasitol Parasit Dis, 2019,37(2):218-222. (in Chinese) | [17] | ( 刘欣, 齐永芬, 鱼艳荣. 血吸虫病肝纤维化中可溶性虫卵抗原对肝星状细胞的作用[J]. 中国寄生虫学与寄生虫病杂志, 2019,37(2):218-222.) | [18] | Sun Y, Zheng KY, He X, et al. The phenotype changes of Kupffer cells in the progression of hepatic schistosomiasis japonica[J]. Chin J Parasitol Parasit Dis, 2017,35(3):224-229. (in Chinese) | [18] | ( 孙悦, 郑葵阳, 何兴, 等. 库普弗细胞在小鼠日本血吸虫肝病发展过程中的表型变化[J]. 中国寄生虫学与寄生虫病杂志, 2017,35(3):224-229.) | [19] | Xu FY, Liu CW, Zhou DD, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016,64(3):157-167. | [20] | Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response[J]. Cell, 2013,153(3):601-613. | [21] | He X, Tang R, Sun Y, et al. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis[J]. EBioMedicine, 2016,13:339-347. | [22] | Zhu DD, He X, Duan YN, et al. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum[J]. Parasit Vectors, 2014,7:148. | [23] | Chen X, Ba Y, Ma LJ, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008,18(10):997-1006. | [24] | Valadi H, Ekstr?m K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007,9(6):654-659. | [25] | Sarkies P, Miska EA. Molecular biology. Is there social RNA?[J]. Science, 2013,341(6145):467-468. | [26] | Wang YG, Fan XB, Lei NH, et al. A microRNA derived from Schistosoma japonicum promotes schistosomiasis hepatic fibrosis by targeting host secreted frizzled-related protein 1[J]. Front Cell Infect Microbiol, 2020,10:101. | [27] | He X, Wang YG, Fan XB, et al. A schistosome miRNA promotes host hepatic fibrosis by targeting transforming growth factor beta receptor Ⅲ[J]. J Hepatol, 2020,72(3):519-527. | [28] | Liu JT, Zhu LH, Wang JB, et al. Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism[J]. PLoS Pathog, 2019,15(6):e1007817. | [29] | Meningher T, Barsheshet Y, Ofir-Birin Y, et al. Schistosomal extracellular vesicle-enclosed miRNAs modulate host T helper cell differentiation[J]. EMBO Rep, 2020,21(1):e47882. | [30] | LaMonte G, Philip N, Reardon J, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance[J]. Cell Host Microbe, 2012,12(2):187-199. | [31] | Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1[J]. Science, 2002,295(5564):2456-2459. |
|