中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (1): 85-91.doi: 10.12140/j.issn.1000-7423.2023.01.013
栗根1(), 孙同骏1, 钱亚云, 李倩倩1, 杨小迪*(
)
收稿日期:
2022-05-17
修回日期:
2022-09-06
出版日期:
2023-02-28
发布日期:
2023-01-17
通讯作者:
* 杨小迪 (1980-),男,博士,教授,从事寄生虫感染与免疫研究。E-mail:作者简介:
栗根 (2001-),男,本科在读,从事寄生虫感染与免疫研究。E-mail:ligen20010915@163.com
基金资助:
LI Gen1(), SUN Tongjun1, QIAN Yayun, LI Qianqian1, YANG Xiaodi*(
)
Received:
2022-05-17
Revised:
2022-09-06
Online:
2023-02-28
Published:
2023-01-17
Contact:
* E-mail: Supported by:
摘要:
血吸虫是一种人及哺乳动物体内寄生的蠕虫,在与宿主共进化过程中,通过调控宿主固有及适应性免疫应答以诱导其免疫逃逸,营造有利于其长久寄生的微环境。近年来,血吸虫及其虫源性成分对过敏性、自身免疫性和代谢性疾病等多种免疫失调性疾病的药理效应成为研究热点。本文综述了血吸虫及其衍生物在各种免疫失调性疾病中的调节作用和相关机制,以期为临床治疗提供实验基础和理论依据。
中图分类号:
栗根, 孙同骏, 钱亚云, 李倩倩, 杨小迪. 血吸虫及其衍生物调节免疫失调性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 85-91.
LI Gen, SUN Tongjun, QIAN Yayun, LI Qianqian, YANG Xiaodi. Research progress on the role of schistosome and its derivatives on modulation of immune dysregulatory diseases[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(1): 85-91.
[1] |
Bach JF. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals[J]. Nat Rev Immunol, 2018, 18(2): 105-120.
doi: 10.1038/nri.2017.111 |
[2] | Mu SS, Yang JQ. Relationship between parasitic infections and hygiene hypothesis: a review[J]. Chin J Schisto Control, 2020, 32(2): 203-207. (in Chinese) |
(穆莎莎, 杨俊齐. 寄生虫感染与“卫生假说”关系研究进展[J]. 中国血吸虫病防治杂志, 2020, 32(2): 203-207.) | |
[3] | Xu ZP, Ji MJ, Wu GL. The toxicological and pharmacological effects of parasite derived components on the host[J]. Chin J Parasitol Parasit Dis, 2022, 40(4): 1-11. (in Chinese) |
(徐志鹏, 季旻珺, 吴观陵. 寄生虫虫源性成分对宿主的毒理与药理效应[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 1-11.) | |
[4] |
Mu Y, McManus DP, Hou N, et al. Schistosome infection and schistosome-derived products as modulators for the prevention and alleviation of immunological disorders[J]. Front Immunol, 2021, 12: 619776.
doi: 10.3389/fimmu.2021.619776 |
[5] |
Cai ZS, Deng X, Zhao L, et al. The relationship between Schistosoma and glycolipid metabolism[J]. Microb Pathog, 2021, 159: 105120.
doi: 10.1016/j.micpath.2021.105120 |
[6] | Li JH, Liu H, Jiang J, et al. The potential role of schistosome-associated factors as therapeutic modulators of the immune system[J]. Infect Immun, 2020, 88(8): e00754-e00719. |
[7] |
Souza COS, Gardinassi LG, Rodrigues V, et al. Monocyte and macrophage-mediated pathology and protective immunity during schistosomiasis[J]. Front Microbiol, 2020, 11: 1973.
doi: 10.3389/fmicb.2020.01973 pmid: 32922381 |
[8] |
Ho CH, Cheng CH, Huang TW, et al. Switched phenotypes of macrophages during the different stages of Schistosoma japonicum infection influenced the subsequent trends of immune responses[J]. J Microbiol Immunol Infect, 2022, 55(3): 503-526.
doi: 10.1016/j.jmii.2021.06.005 |
[9] |
Chen Y, Wei BG, Xu PP, et al. Schistosoma japonicum cystatin suppresses osteoclastogenesis via manipulating the NF-κB signaling pathway[J]. Mol Med Rep, 2021, 23(4): 273.
doi: 10.3892/mmr |
[10] |
Sun X, Lv ZY, Peng H, et al. Effects of a recombinant schistosomal-derived anti-inflammatory molecular (rSj16) on the lipopolysaccharide (LPS)-induced activated RAW264.7[J]. Parasitol Res, 2012, 110(6): 2429-2437.
doi: 10.1007/s00436-011-2782-9 pmid: 22281546 |
[11] |
Liu J, Pan T, You X, et al. SjCa8, a calcium-binding protein from Schistosoma japonicum, inhibits cell migration and suppresses nitric oxide release of RAW264.7 macrophages[J]. Parasit Vectors, 2015, 8: 513.
doi: 10.1186/s13071-015-1119-4 pmid: 26445908 |
[12] |
Shen P, Zhang TY, Chen G, et al. Recombinant P40 protein of Schistosoma japonicum inhibits TREM-1 expression in RAW264.7 cells via FOXO3a[J]. Biomed Pharmacother, 2022, 149: 112826.
doi: 10.1016/j.biopha.2022.112826 |
[13] |
Winkel BMF, Dalenberg MR, de Korne CM, et al. Early induction of human regulatory dermal antigen presenting cells by skin-penetrating Schistosoma mansoni cercariae[J]. Front Immunol, 2018, 9: 2510.
doi: 10.3389/fimmu.2018.02510 |
[14] |
Sun X, Yang F, Shen J, et al. Recombinant Sj16 from Schistosoma japonicum contains a functional N-terminal nuclear localization signal necessary for nuclear translocation in dendritic cells and interleukin-10 production[J]. Parasitol Res, 2016, 115(12): 4559-4571.
pmid: 27640151 |
[15] |
Lopes DM, Oliveira SC, Page B, et al. Schistosoma mansoni rSm29 antigen induces a regulatory phenotype on dendritic cells and lymphocytes from patients with cutaneous leishmaniasis[J]. Front Immunol, 2019, 9: 3122.
doi: 10.3389/fimmu.2018.03122 |
[16] |
Kaisar MMM, Ritter M, Del Fresno C, et al. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses[J]. PLoS Biol, 2018, 16(4): e2005504.
doi: 10.1371/journal.pbio.2005504 |
[17] |
Klaver EJ, Kuijk LM, Lindhorst TK, et al. Schistosoma mansoni soluble egg antigens induce expression of the negative regulators SOCS1 and SHP1 in human dendritic cells via interaction with the mannose receptor[J]. PLoS One, 2015, 10(4): e0124089.
doi: 10.1371/journal.pone.0124089 |
[18] |
Webb LM, Phythian-Adams AT, Costain AH, et al. Plasmacytoid dendritic cells facilitate Th cell cytokine responses throughout Schistosoma mansoni infection[J]. ImmunoHorizons, 2021, 5(8): 721-732.
doi: 10.4049/immunohorizons.2100071 |
[19] |
Zhao Y, Yang Q, Jin CX, et al. Changes of CD103-expressing pulmonary CD4+ and CD8+ T cells in S. japonicum infected C57BL/6 mice[J]. BMC Infect Dis, 2019, 19(1): 999.
doi: 10.1186/s12879-019-4633-8 pmid: 31775660 |
[20] | Meningher T, Barsheshet Y, Ofir-Birin Y, et al. Schistosomal extracellular vesicle-enclosed miRNAs modulate host T helper cell differentiation[J]. EMBO Rep, 2020, 21(1): e47882. |
[21] | Qi QQ, Wang XF, Zhang LN, et al. Schistosoma japonicum heat shock protein 60 enhances regulatory T cell immunosuppressive function by promoting the expressions of IL-10 and TGF-β[J]. Chin J Schisto Control, 2018, (01): 42-46. (in Chinese) |
(齐倩倩, 王小番, 张丽娜, 等. 日本血吸虫热休克蛋白60通过诱导细胞表达IL-10和TGF-β增强其免疫抑制功能[J]. 中国血吸虫病防治杂志, 2018, (1): 42-46.) | |
[22] | Gao YR, Chen WW, Li JW, et al. Treg/Th17 balance and immunology of schistosome infection: a review[J]. Chin J Schisto Control, 2018, 30(5): 588-591. (in Chinese) |
(高彦茹, 陈尉文, 李佳望, 等. Treg/Th17平衡与血吸虫感染免疫[J]. 中国血吸虫病防治杂志, 2018, 30(5): 588-591.) | |
[23] | Du JW, Wang XF. Research progress on the role of schistosomiasis in regulating autoimmune and allergic diseases[J]. Chin J Parasitol Parasit Dis, 2011, 29(6): 473-476. (in Chinese) |
(杜久伟, 汪雪峰. 血吸虫感染调节自身免疫性疾病和过敏性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2011, 29(6): 473-476.) | |
[24] |
Schramm G, Suwandi A, Galeev A, et al. Schistosome eggs impair protective Th1/Th17 immune responses against Salmonella infection[J]. Front Immunol, 2018, 9: 2614.
doi: 10.3389/fimmu.2018.02614 |
[25] |
Li L, Shan WQ, Zhu HJ, et al. SJMHE1 peptide from Schistosoma japonicum inhibits asthma in mice by regulating Th17/treg cell balance via miR-155[J]. J Inflamm Res, 2021, 14: 5305-5318.
doi: 10.2147/JIR.S334636 pmid: 34703270 |
[26] |
Xiao JL, Guan F, Sun L, et al. B cells induced by Schistosoma japonicum infection display diverse regulatory phenotypes and modulate CD4+ T cell response[J]. Parasit Vectors, 2020, 13(1): 147.
doi: 10.1186/s13071-020-04015-3 |
[27] |
van der Vlugt LEPM, Zinsou JF, Ozir-Fazalalikhan A, et al. Interleukin 10 (IL-10)-producing CD1dhi regulatory B cells from Schistosoma haematobium-infected individuals induce IL-10-positive T cells and suppress effector T-cell cytokines[J]. J Infect Dis, 2014, 210(8): 1207-1216.
doi: 10.1093/infdis/jiu257 |
[28] |
Haeberlein S, Obieglo K, Ozir-Fazalalikhan A, et al. Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells[J]. PLoS Pathog, 2017, 13(7): e1006539.
doi: 10.1371/journal.ppat.1006539 |
[29] |
Fernandes JS, Cardoso LS, Pitrez PM, et al. Helminths and asthma: risk and protection[J]. Immunol Allergy Clin North Am, 2019, 39(3): 417-427.
doi: 10.1016/j.iac.2019.03.009 |
[30] |
Li ZD, Zhang W, Luo F, et al. Allergen-specific treg cells upregulated by lung-stage S. japonicum infection alleviates allergic airway inflammation[J]. Front Cell Dev Biol, 2021, 9: 678377.
doi: 10.3389/fcell.2021.678377 |
[31] |
van der Vlugt LEPM, Obieglo K, Ozir-Fazalalikhan A, et al. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function[J]. Int J Parasitol, 2017, 47(9): 545-554.
doi: S0020-7519(17)30098-X pmid: 28385494 |
[32] | Wang T, Shan WQ, Xue F, et al. Schistosoma japonicum polypeptide SJMHE1 attenuates airway inflammation by inhibiting Th2 cells and ILC2 responses in lung tissues of asthmatic mice[J]. Chin J Cell Mol Immunol, 2021, 37(12): 1106-1110. (in Chinese) |
(王婷, 单文琪, 薛菲, 等. 日本血吸虫多肽SJMHE1通过抑制哮喘小鼠肺组织中Th2细胞和ILC2反应减轻小鼠气道炎症[J]. 细胞与分子免疫学杂志, 2021, 37(12): 1106-1110.) | |
[33] |
Zhang WZ, Li L, Zheng Y, et al. Schistosoma japonicum peptide SJMHE1 suppresses airway inflammation of allergic asthma in mice[J]. J Cell Mol Med, 2019, 23(11): 7819-7829.
doi: 10.1111/jcmm.v23.11 |
[34] |
Marinho FV, Alves CC, de Souza SC, et al. Schistosoma mansoni tegument (smteg) induces IL-10 and modulates experimental airway inflammation[J]. PLoS One, 2016, 11(7): e0160118.
doi: 10.1371/journal.pone.0160118 |
[35] |
He L, Zhou S, Qi QQ, et al. The regulation of regulation: Interleukin-10 increases CD4+ CD25+ regulatory T cells but impairs their immunosuppressive activity in murine models with schistosomiasis japonica or asthma[J]. Immunology, 2018, 153(1): 84-96.
doi: 10.1111/imm.12813 |
[36] |
Kaplan GG. The global burden of IBD: from 2015 to 2025[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(12): 720-727.
doi: 10.1038/nrgastro.2015.150 pmid: 26323879 |
[37] |
Pêgo B, Martinusso CA, Bernardazzi C, et al. Schistosoma mansoni coinfection attenuates murine Toxoplasma gondii-induced Crohn’s-like ileitis by preserving the epithelial barrier and downregulating the inflammatory response[J]. Front Immunol, 2019, 10: 442.
doi: 10.3389/fimmu.2019.00442 |
[38] |
Zhou HL, Zeng XJ, Sun DC, et al. Monosexual cercariae of Schistosoma japonicum infection protects against DSS-induced colitis by shifting the Th1/Th2 balance and modulating the gut Microbiota[J]. Front Microbiol, 2021, 11: 606605.
doi: 10.3389/fmicb.2020.606605 |
[39] |
Driss V, El Nady M, Delbeke M, et al. The schistosome glutathione S-transferase P28GST, a unique helminth protein, prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils[J]. Mucosal Immunol, 2016, 9(2): 322-335.
doi: 10.1038/mi.2015.62 pmid: 26174763 |
[40] |
Sarazin A, Dendooven A, Delbeke M, et al. Treatment with P28GST, a schistosome-derived enzyme, after acute colitis induction in mice: decrease of intestinal inflammation associated with a down regulation of Th1/Th17 responses[J]. PLoS One, 2018, 13(12): e0209681.
doi: 10.1371/journal.pone.0209681 |
[41] |
Capron M, Béghin L, Leclercq C, et al. Safety of P28GST, a protein derived from a schistosome helminth parasite, in patients with Crohn’s disease: a pilot study (ACROHNEM)[J]. J Clin Med, 2019, 9(1): 41.
doi: 10.3390/jcm9010041 |
[42] | Floudas A, Aviello G, Schwartz C, et al. Schistosoma mansoni worm infection regulates the intestinal Microbiota and susceptibility to colitis[J]. Infect Immun, 2019, 87(8): e00275-e00219. |
[43] | Zhang BB, Wu XY, Song QY, et al. Gut Microbiota modulates intestinal pathological injury in Schistosoma japonicum-infected mice[J]. Front Med (Lausanne), 2020, 7: 588928. |
[44] |
Zhu TY, Xue QK, Liu YY, et al. Analysis of intestinal microflora and metabolites from mice with DSS-induced IBD treated with Schistosoma soluble egg antigen[J]. Front Cell Dev Biol, 2021, 9: 777218.
doi: 10.3389/fcell.2021.777218 |
[45] | Zhu YJ, Xu ZP, Ji MJ. Advances in the research on the interaction between human parasites and gut microbiota[J]. Chin J Schisto Control, 2020, 32(6): 649-653. (in Chinese) |
(朱元杰, 徐志鹏, 季旻珺. 人体寄生虫与肠道菌群相互作用的研究进展[J]. 中国血吸虫病防治杂志, 2020, 32(6): 649-653.) | |
[46] |
Weng JP. The epidemic study and burden of type 1 diabetes in China[J]. Sci Sin Vitae, 2018, 48(8): 834-839. (in Chinese)
doi: 10.1360/N052018-00016 |
(翁建平. 我国1型糖尿病的流行病学研究与疾病负担[J]. 中国科学: 生命科学, 2018, 48(8): 834-839.) | |
[47] |
Mughal MAS, Khan MK, Abbas Z, et al. Helminth protection against type-1 diabetes: an insight into immunomodulatory effect of helminth-induced infection[J]. Mol Biol Rep, 2021, 48(9): 6581-6588.
doi: 10.1007/s11033-021-06663-9 pmid: 34432219 |
[48] | Zaccone P, Burton OT, Gibbs S, et al. Immune modulation by Schistosoma mansoni antigens in NOD mice: effects on both innate and adaptive immune systems[J]. J Biomed Biotechnol, 2010, 2010: 795210. |
[49] |
Yan K, Wang B, Zhou HB, et al. Amelioration of type 1 diabetes by recombinant fructose-1, 6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model[J]. Parasitol Res, 2020, 119(1): 203-214.
doi: 10.1007/s00436-019-06511-7 pmid: 31845020 |
[50] |
Osada Y, Fujiyama T, Kamimura N, et al. Dual genetic absence of STAT6 and IL-10 does not abrogate anti-hyperglycemic effects of Schistosoma mansoni in streptozotocin-treated diabetic mice[J]. Exp Parasitol, 2017, 177: 1-12.
doi: 10.1016/j.exppara.2017.03.008 |
[51] |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990—2017: analysis for the global burden of disease study[J]. Lancet, 2020, 395(10219): 200-211.
doi: 10.1016/S0140-6736(19)32989-7 |
[52] |
Tang H, Liang YB, Chen ZB, et al. Soluble egg antigen activates M2 macrophages via the STAT6 and PI3K pathways, and Schistosoma japonicum alternatively activates macrophage polarization to improve the survival rate of septic mice[J]. J Cell Biochem, 2017, 118(12): 4230-4239.
doi: 10.1002/jcb.26073 pmid: 28419526 |
[53] |
Li HH, Wang SS, Zhan B, et al. Therapeutic effect of Schistosoma japonicum cystatin on bacterial sepsis in mice[J]. Parasites Vectors, 2017, 10(1): 222.
doi: 10.1186/s13071-017-2162-0 |
[54] |
Gao SF, Li HH, Xie H, et al. Therapeutic efficacy of Schistosoma japonicum cystatin on sepsis-induced cardiomyopathy in a mouse model[J]. Parasit Vectors, 2020, 13(1): 260.
doi: 10.1186/s13071-020-04104-3 |
[55] |
Xie H, Wu LQ, Chen XZ, et al. Schistosoma japonicum cystatin alleviates sepsis through activating regulatory macrophages[J]. Front Cell Infect Microbiol, 2021, 11: 617461.
doi: 10.3389/fcimb.2021.617461 |
[56] |
Collaborators GBD2O, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017, 377(1): 13-27.
doi: 10.1056/NEJMoa1614362 |
[57] |
Zinsou JF, Janse JJ, Honpkehedji YY, et al. Schistosoma haematobium infection is associated with lower serum cholesterol levels and improved lipid profile in overweight/obese individuals[J]. PLoS Negl Trop Dis, 2020, 14(7): e0008464.
doi: 10.1371/journal.pntd.0008464 |
[58] |
Hussaarts L, García-Tardón N, van Beek L, et al. Chronic helminth infection and helminth-derived egg antigens promote adipose tissue M2 macrophages and improve insulin sensitivity in obese mice[J]. FASEB J, 2015, 29(7): 3027-3039.
doi: 10.1096/fj.14-266239 pmid: 25852044 |
[59] |
van den Berg SM, Dam ADV, Kusters PJH, et al. Helminth antigens counteract a rapid high-fat diet-induced decrease in adipose tissue eosinophils[J]. J Mol Endocrinol, 2017, 59(3): 245-255.
doi: 10.1530/JME-17-0112 pmid: 28694301 |
[60] | van der Zande HJP, Gonzalez MA, de Ruiter K, et al. The helminth glycoprotein omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake[J]. FASEB J, 2021, 35(2): e21331. |
[61] |
Li MN, Wang HQ, Ni YY, et al. Helminth-induced CD9+ B-cell subset alleviates obesity-associated inflammation via IL-10 production[J]. Int J Parasitol, 2022, 52(2/3): 111-123.
doi: 10.1016/j.ijpara.2021.08.009 |
[62] |
Cortes-Selva D, Elvington AF, Ready A, et al. Schistosoma mansoni infection-induced transcriptional changes in hepatic macrophage metabolism correlate with an athero-protective phenotype[J]. Front Immunol, 2018, 9: 2580.
doi: 10.3389/fimmu.2018.02580 pmid: 30483256 |
[63] |
Yang HJ, Li HQ, Chen WD, et al. Therapeutic effect of Schistosoma japonicum cystatin on atherosclerotic renal damage[J]. Front Cell Dev Biol, 2021, 9: 760980.
doi: 10.3389/fcell.2021.760980 |
[64] | Li YN, Yang XD, Chen SY, et al. Effect of recombinant cysteine protease inhibitor of Schistosoma japonicum on prognosis of myocardial infarction in mice and its immuno-regulation mechanism[J]. Chin J Biol, 2022, 35(1): 55-62. (in Chinese) |
(李燕楠, 杨小迪, 陈思宇, 等. 日本血吸虫重组半胱氨酸蛋白酶抑制剂对小鼠心肌梗死预后的影响及其免疫调节机制[J]. 中国生物制品学杂志, 2022, 35(1): 55-62.) | |
[65] |
Peng B, She XG, Cheng K, et al. Orthotopic liver transplantation from a donor with Schistosoma japonicum[J]. Hepatobiliary Pancreat Dis Int, 2017, 16(3): 326-328.
doi: 10.1016/S1499-3872(17)60023-7 |
[66] |
Mahmoud KM, Sobh MA, El-Agroudy AE, et al. Impact of schistosomiasis on patient and graft outcome after renal transplantation: 10 years’ follow-up[J]. Nephrol Dial Transplant, 2001, 16(11): 2214-2221.
doi: 10.1093/ndt/16.11.2214 |
[67] |
Arroyo-López C. Helminth therapy for autism under gut-brain axis-hypothesis[J]. Med Hypotheses, 2019, 125: 110-118.
doi: S0306-9877(18)31248-9 pmid: 30902137 |
[1] | 谭潇, 朱琪, 刘众齐, 李佳, 彭丁晋. 日本血吸虫Sj26gst mRNA候选疫苗的免疫原性研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 546-551. |
[2] | 刘华熳, Bikash Giri, 方传涛, 郑亚萌, 吴慧欣, 曾敏浩, 李姗, 程国锋. 日本血吸虫m6A修饰的性别相关circRNA鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 552-558. |
[3] | 兰炜明, 徐慧, 徐银, 邱婷婷, 谢曙英, 邓凤林, 胡绍良, 刘欢, 郭家钢, 曾小军. 荧光定量PCR用于日本血吸虫感染高危环境早期预警的研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 502-505. |
[4] | 李婕, 文雨松, 李召军. 我国旅游开发对血吸虫病防治的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 355-360. |
[5] | 李文杰, 冯萌, 程训佳. 蠕虫及其来源分子对螨性哮喘免疫调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 131-136. |
[6] | 马慧, 种世桂, 陈根, 张伶慧, 秦俊梅, 赵玉敏. 多房棘球蚴病相关细胞信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 223-227. |
[7] | 陈琳, 朱继峰, 邱竞帆, 徐志鹏, 张东辉, 陈璐, 何健, 李伟, 杨坤, 季旻珺. 寓全健康理念于血吸虫病防控虚拟仿真项目建设[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 81-84. |
[8] | 王晓玲, 张卫, 易存, 陈祥宇, 杨文彬, 徐斌, 胡薇. SjGPR89蛋白对日本血吸虫生长发育的影响[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 701-707. |
[9] | 陈果, 朱丹丹, 段义农. 免疫调节蛋白B7家族在日本血吸虫感染免疫调节中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 774-779. |
[10] | 严晓岚, 闻礼永, 熊彦红, 郑彬, 张剑锋, 汪天平, 俞丽玲, 许国章, 林丹丹, 周晓农. 《日本血吸虫抗体检测标准 酶联免疫吸附试验法》解读[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 798-800. |
[11] | 汤宪时, 季文翔, 熊春蓉, 周永华, 许永良, 仝德胜. 晚期日本血吸虫感染小鼠焦虑样行为学研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 622-628. |
[12] | 冯家鑫, 公衍峰, 罗卓韦, 汪伟, 曹淳力, 许静, 李石柱. 我国血吸虫病防治策略的科学基础与“十四五”展望[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 428-435. |
[13] | 王吉鹏. 驱动血吸虫生长发育的干细胞研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 436-440. |
[14] | 梁乐, 张璟, 沈玉娟, 胡媛, 曹建平. 环鸟苷酸腺苷酸促日本血吸虫感染小鼠肝虫卵肉芽肿形成及纤维化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 441-445. |
[15] | 陈兵, 张国莉, 张高红. 血吸虫病候选疫苗临床研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 511-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||