中国寄生虫学与寄生虫病杂志 ›› 2022, Vol. 40 ›› Issue (6): 774-779.doi: 10.12140/j.issn.1000-7423.2022.06.013
收稿日期:
2022-05-11
修回日期:
2022-06-13
出版日期:
2022-12-30
发布日期:
2022-12-26
通讯作者:
段义农
作者简介:
陈果(1998-),女,硕士研究生,从事感染与免疫研究。E-mail:1312408793@qq.com
基金资助:
CHEN Guo(), ZHU Dan-dan, DUAN Yi-nong()
Received:
2022-05-11
Revised:
2022-06-13
Online:
2022-12-30
Published:
2022-12-26
Contact:
DUAN Yi-nong
Supported by:
摘要:
日本血吸虫病是严重危害人们健康的人兽共患寄生虫病之一。血吸虫感染机体后,在早期以Th1细胞分泌干扰素-γ(IFN-γ)、肿瘤坏死因子-α(TNF-α),CD8+ T细胞发挥细胞免疫为主,在慢性期Th2细胞分泌大量白细胞介素4(IL-4)、IL-13和IL-12,Th1细胞功能受到抑制,从而促使宿主产生以体液免疫为主的适应性免疫应答。免疫调节蛋白B7家族是T细胞活化的第二信号,对调节T细胞免疫应答起着至关重要的作用。该家族成员包括B7-1、B7-2、B7同源物1(B7-H1)、B7树突状细胞分子(B7-DC),B7-H2、B7-H3、B7-H4、B7-H5、B7-H6和B7-H7,对T细胞有共刺激或共抑制的作用,其中一些在血吸虫病免疫调节中发挥重要的作用。本文就B7家族成员在血吸虫感染免疫方面最新研究进展作一综述。
中图分类号:
陈果, 朱丹丹, 段义农. 免疫调节蛋白B7家族在日本血吸虫感染免疫调节中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 774-779.
CHEN Guo, ZHU Dan-dan, DUAN Yi-nong. Research progress of immune regulation protein B7 family on immune regulation during Schistosoma japonicum infection[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(6): 774-779.
表1
B7家族的免疫检查点[9⇓⇓-12]
配体 | 别名 | 受体 | 作用 |
---|---|---|---|
B7-1 | CD80 | CD28 CTLA-4 | 共刺激 共抑制 |
B7-2 | CD86 | CD28 CTLA-4 | 共刺激 共抑制 |
B7-H1 | PD-L1、CD274 | PD-1(CD279) | 共抑制 |
B7-DC | PD-L2、CD273 | PD-1(CD279) | 共抑制 |
B7-H2 | ICOSL、B7RP-1、 CD275 | ICOS (CD278) CD28 CTLA-4 | 共刺激 共刺激 未知 |
B7-H3 | CD276、B7RP-2 | 未知 | 共抑制 |
B7-H4 | VTCN1、B7x、B7S1 | 未知 | 共抑制 |
B7-H5 | VISTA、PD-1H | 未知 | 共抑制 |
B7-H6 | NCR3LG1 | NKp30 | 共刺激 |
B7-H7 | HHLA2 | TMIGD2(CD28H) 未知 | 共刺激 共抑制 |
[1] | Hong Y, Fu Z, Cao X, et al. Changes in microRNA expression in response to Schistosoma japonicum infection[J]. Parasite Immunol, 2017, 39(2): e12416. |
[2] |
Chen QL, Zhang JQ, Zheng T, et al. The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis[J]. Parasit Vectors, 2019, 12(1): 611.
doi: 10.1186/s13071-019-3866-0 pmid: 31888743 |
[3] |
Sica GL, Choi IH, Zhu GF, et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity[J]. Immunity, 2003, 18(6): 849-861.
doi: 10.1016/s1074-7613(03)00152-3 pmid: 12818165 |
[4] | Zhou S, Jin X, Li YL, et al. Blockade of PD-1 signaling enhances Th2 cell responses and aggravates liver immunopathology in mice with schistosomiasis japonica[J]. PLoS Negl Trop Dis, 2016, 10(10): e0005094. |
[5] |
McRae KM, Stear MJ, Good B, et al. The host immune response to gastrointestinal nematode infection in sheep[J]. Parasite Immunol, 2015, 37(12): 605-613.
doi: 10.1111/pim.12290 pmid: 26480845 |
[6] | Li QT, Qiu MJ, Yang SL, et al. Alpha-fetoprotein regulates the expression of immune-related proteins through the NF-κB (P65) pathway in hepatocellular carcinoma cells[J]. J Oncol, 2020, 2020: 9327512. |
[7] |
MacGregor HL, Ohashi PS. Molecular pathways: evaluating the potential for B7-H4 as an immunoregulatory target[J]. Clin Cancer Res, 2017, 23(12): 2934-2941.
doi: 10.1158/1078-0432.CCR-15-2440 pmid: 28325750 |
[8] |
Ahangar NK, Hemmat N, Khalaj-Kondori M, et al. The regulatory cross-talk between microRNAs and novel members of the B7 family in human diseases: a scoping review[J]. Int J Mol Sci, 2021, 22(5): 2652.
doi: 10.3390/ijms22052652 |
[9] |
Zhu HF, Li Y. Small-molecule targets in tumor immunotherapy[J]. Nat Prod Bioprospect, 2018, 8(4): 297-301.
doi: 10.1007/s13659-018-0177-7 |
[10] |
Wikenheiser DJ, Stumhofer JS. ICOS co-stimulation: friend or foe?[J]. Front Immunol, 2016, 7: 304.
doi: 10.3389/fimmu.2016.00304 pmid: 27559335 |
[11] | Mach P, Köninger A, Reisch B, et al. Soluble PD-L1 and B7-H4 serum levels during the course of physiological pregnancy[J]. Am J Reprod Immunol, 2022, 87(3): e13519. |
[12] |
Janakiram M, Chinai JM, Fineberg S, et al. Expression, clinical significance, and receptor identification of the newest B7 family member HHLA2 protein[J]. Clin Cancer Res, 2015, 21(10): 2359-2366.
doi: 10.1158/1078-0432.CCR-14-1495 pmid: 25549724 |
[13] |
Esensten JH, Helou YA, Chopra G, et al. CD28 costimulation: From mechanism to therapy[J]. Immunity, 2016, 44(5): 973-988.
doi: 10.1016/j.immuni.2016.04.020 pmid: 27192564 |
[14] |
Linsley PS, Brady W, Grosmaire L, et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation[J]. J Exp Med, 1991, 173(3): 721-730.
doi: 10.1084/jem.173.3.721 pmid: 1847722 |
[15] | Hosseini A, Gharibi T, Marofi F, et al. CTLA-4: from mechanism to autoimmune therapy[J]. Int Immunopharmacol, 2020, 80: 106221. |
[16] |
Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7[J]. J Exp Med, 1991, 174(3): 561-569.
doi: 10.1084/jem.174.3.561 pmid: 1714933 |
[17] |
Kraehenbuehl L, Weng CH, Eghbali S, et al. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways[J]. Nat Rev Clin Oncol, 2022, 19(1): 37-50.
doi: 10.1038/s41571-021-00552-7 |
[18] | Tian F, Xia CM, Luo W, et al. Effects of B7 costimulatory molecules on Th1/Th2 cytokine expression levels in the mice infected with Schistosoma japonicum[J]. J Trop Med, 2003, 3(2): 139-141, 206. (in Chinese) |
(田芳, 夏超明, 骆伟, 等. 协同刺激分子B7-1/2对日本血吸虫感染小鼠Th1/Th2细胞因子表达水平的影响[J]. 热带医学杂志, 2003, 3(2): 139-141, 206.) | |
[19] |
Reiser H, Stadecker MJ. Costimulatory B7 molecules in the pathogenesis of infectious and autoimmune diseases[J]. N Engl J Med, 1996, 335(18): 1369-1377.
doi: 10.1056/NEJM199610313351807 |
[20] |
Subramanian G, Kazura JW, Pearlman E, et al. B7-2 requirement for helminth-induced granuloma formation and CD4 type 2 T helper cell cytokine expression[J]. J Immunol, 1997, 158(12): 5914-5920.
pmid: 9190944 |
[21] |
Simpson TR, Quezada SA, Allison JP. Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS)[J]. Curr Opin Immunol, 2010, 22(3): 326-332.
doi: 10.1016/j.coi.2010.01.001 pmid: 20116985 |
[22] |
Nurieva RI, Duong J, Kishikawa H, et al. Transcriptional regulation of Th2 differentiation by inducible costimulator[J]. Immunity, 2003, 18(6): 801-811.
pmid: 12818161 |
[23] |
Yang Q, Qu JL, Jin CX, et al. Schistosoma japonicum infection promotes the response of Tfh cells through down-regulation of caspase-3-mediating apoptosis[J]. Front Immunol, 2019, 10: 2154.
doi: 10.3389/fimmu.2019.02154 |
[24] | Wang B, Liang S, Wang Y, et al. Th17 down-regulation is involved in reduced progression of schistosomiasis fibrosis in ICOSL KO mice[J]. PLoS Negl Trop Dis, 2015, 9(1): e0003434. |
[25] | Chen XJ, Yang XW, Li Y, et al. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection[J]. PLoS Pathog, 2014, 10(5): e1004097. |
[26] | Zhan TZ, Ma HH, Zhang TT, et al. Relation between ICOS signaling and Th9 cell polarization in mice infected with Schistosoma japonicum[J]. Chin J Schisto Control, 2018, 30(4): 436-439. (in Chinese) |
(战廷正, 马会会, 张婷婷, 等. ICOS信号与日本血吸虫感染小鼠Th9细胞极化的关系[J]. 中国血吸虫病防治杂志, 2018, 30(4): 436-439.) | |
[27] |
Mak TW, Shahinian A, Yoshinaga SK, et al. Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell-dependent B cell responses[J]. Nat Immunol, 2003, 4(8): 765-772.
pmid: 12833154 |
[28] |
Heizmann B, Kastner P, Chan SS. The Ikaros family in lymphocyte development[J]. Curr Opin Immunol, 2018, 51: 14-23.
doi: S0952-7915(17)30095-X pmid: 29278858 |
[29] | Wang Y, Cai R, Wang B, et al. Effects of Schistosoma japonicum infection on the CD28/CD86 signaling pathway and Th1/Th2 polarization in ICOS transgenic mice[J]. J Chin Med Univ, 2013, 42(6): 493-500. (in Chinese) |
(王瑜, 蔡茹, 王波, 等. ICOS转基因小鼠感染日本血吸虫对CD28/CD86表达及Th1/Th2极化的影响[J]. 中国医科大学学报, 2013, 42(6): 493-500.) | |
[30] |
van der Vlugt LEPM, Obieglo K, Ozir-Fazalalikhan A, et al. Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function[J]. Int J Parasitol, 2017, 47(9): 545-554.
doi: S0020-7519(17)30098-X pmid: 28385494 |
[31] | Xu L, Qian X, Jin J, et al. Sex bias in generation and functional phenotypes of peripheral T follicular helper cells in schistosomiasis japonica[J]. Chin J Schisto Control, 2016, 28(2): 167-171. (in Chinese) |
(许磊, 钱香, 金姣, 等. 性别对日本血吸虫感染过程中滤泡辅助性T细胞比例和活性影响的初步分析[J]. 中国血吸虫病防治杂志, 2016, 28(2): 167-171.) | |
[32] |
Zhang YM, Jiang YY, Wang YJ, et al. Higher frequency of circulating PD-1highCXCR5+CD4+ Tfh cells in patients with chronic schistosomiasis[J]. Int J Biol Sci, 2015, 11(9): 1049-1055.
doi: 10.7150/ijbs.12023 |
[33] | Xie SH, Wei HX, Peng AP, et al. Ikzf2 regulates the development of ICOS+ Th cells to mediate immune response in the spleen of S. japonicum-infected C57BL/6 mice[J]. Front Immunol, 2021, 12: 687919. |
[34] | Xia CM, Pu XK, Gong W, et al. Immune response and immunopathology in inducible costimulatory molecule(ICOS) transgenic mice infected with Schistosoma japonicum[J]. Chin J Parasitol Parasit Dis, 2006, 24(5): 349-352. (in Chinese) |
夏超明, 濮翔科, 龚唯, 等. 日本血吸虫感染可诱导共刺激分子(ICOS)转基因小鼠的免疫应答及其病理反应[J]. 中国寄生虫学与寄生虫病杂志, 2006, 24(5): 349-352.) | |
[35] |
Wang YY, Lin C, Cao Y, et al. Up-regulation of interleukin-21 contributes to liver pathology of schistosomiasis by driving GC immune responses and activating HSCs in mice[J]. Sci Rep, 2017, 7(1): 16682.
doi: 10.1038/s41598-017-16783-7 pmid: 29192177 |
[36] |
Delmas D, Hermetet F, Aires V. PD-1/PD-L1 checkpoints and resveratrol: a controversial new way for a therapeutic strategy[J]. Cancers (Basel), 2021, 13(18): 4509.
doi: 10.3390/cancers13184509 |
[37] |
Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway[J]. Nat Rev Immunol, 2018, 18(3): 153-167.
doi: 10.1038/nri.2017.108 pmid: 28990585 |
[38] |
Smith P, Walsh CM, Mangan NE, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages[J]. J Immunol, 2004, 173(2): 1240-1248.
doi: 10.4049/jimmunol.173.2.1240 |
[39] |
Zhang YM, Wu YL, Liu H, et al. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection[J]. Parasites Vectors, 2021, 14(1): 497.
doi: 10.1186/s13071-021-05006-8 |
[40] | Gao YN, Chen L, Hou M, et al. TLR2 directing PD-L2 expression inhibit T cells response in Schistosoma japonicum infection[J]. PLoS One, 2013, 8(12): e82480. |
[41] |
Khan AR, Hams E, Floudas A, et al. PD-L1hi B cells are critical regulators of humoral immunity[J]. Nat Commun, 2015, 6: 5997.
doi: 10.1038/ncomms6997 pmid: 25609381 |
[42] |
Zhang Y, Morgan R, Chen C, et al. Mammary-tumor-educated B cells acquire LAP/TGF-β and PD-L1 expression and suppress anti-tumor immune responses[J]. Int Immunol, 2016, 28(9): 423-433.
doi: 10.1093/intimm/dxw007 pmid: 26895637 |
[43] |
Xiao JL, Guan F, Sun L, et al. B cells induced by Schistosoma japonicum infection display diverse regulatory phenotypes and modulate CD4+ T cell response[J]. Parasit Vectors, 2020, 13(1): 147.
doi: 10.1186/s13071-020-04015-3 |
[44] | Feng RR, Chen Y, Liu Y, et al. The role of B7-H3 in tumors and its potential in clinical application[J]. Int Immunopharmacol, 2021, 101: 108153. |
[45] |
Nagai S, Azuma M. The CD28-B7 family of co-signaling molecules[J]. Adv Exp Med Biol, 2019, 1189: 25-51.
doi: 10.1007/978-981-32-9717-3_2 pmid: 31758530 |
[46] |
Ueno T, Yeung MY, McGrath M, et al. Intact B7-H3 signaling promotes allograft prolongation through preferential suppression of Th1 effector responses[J]. Eur J Immunol, 2012, 42(9): 2343-2353.
doi: 10.1002/eji.201242501 pmid: 22733595 |
[47] |
Liu F, Zhang T, Zou ST, et al. B7-H3 promotes cell migration and invasion through the Jak2/Stat3/MMP9 signaling pathway in colorectal cancer[J]. Mol Med Rep, 2015, 12(4): 5455-5460.
doi: 10.3892/mmr.2015.4050 |
[48] |
Li YC, Guo GN, Song J, et al. B7-H3 promotes the migration and invasion of human bladder cancer cells via the PI3K/Akt/STAT3 signaling pathway[J]. J Cancer, 2017, 8(5): 816-824.
doi: 10.7150/jca.17759 pmid: 28382144 |
[49] | Li SX, Zhang GB, Sun HH, et al. Establishment of a sandwich ELISA for testing serum SB7-H3 and detection of SB7-H3 levels in liver disease[J]. Chin J Cell Mol Immunol, 2012, 28(1): 84-86, 90. (in Chinese) |
(李淑湘, 张光波, 孙海洪, 等. 人可溶性B7-H3酶联试剂盒的研制及在肝病患者血清中水平的检测[J]. 细胞与分子免疫学杂志, 2012, 28(1): 84-86, 90.) |
[1] | 谭潇, 朱琪, 刘众齐, 李佳, 彭丁晋. 日本血吸虫Sj26gst mRNA候选疫苗的免疫原性研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 546-551. |
[2] | 刘华熳, Bikash Giri, 方传涛, 郑亚萌, 吴慧欣, 曾敏浩, 李姗, 程国锋. 日本血吸虫m6A修饰的性别相关circRNA鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 552-558. |
[3] | 兰炜明, 徐慧, 徐银, 邱婷婷, 谢曙英, 邓凤林, 胡绍良, 刘欢, 郭家钢, 曾小军. 荧光定量PCR用于日本血吸虫感染高危环境早期预警的研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 502-505. |
[4] | 李文杰, 冯萌, 程训佳. 蠕虫及其来源分子对螨性哮喘免疫调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 131-136. |
[5] | 马慧, 种世桂, 陈根, 张伶慧, 秦俊梅, 赵玉敏. 多房棘球蚴病相关细胞信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 223-227. |
[6] | 栗根, 孙同骏, 钱亚云, 李倩倩, 杨小迪. 血吸虫及其衍生物调节免疫失调性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 85-91. |
[7] | 王晓玲, 张卫, 易存, 陈祥宇, 杨文彬, 徐斌, 胡薇. SjGPR89蛋白对日本血吸虫生长发育的影响[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 701-707. |
[8] | 严晓岚, 闻礼永, 熊彦红, 郑彬, 张剑锋, 汪天平, 俞丽玲, 许国章, 林丹丹, 周晓农. 《日本血吸虫抗体检测标准 酶联免疫吸附试验法》解读[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 798-800. |
[9] | 汤宪时, 季文翔, 熊春蓉, 周永华, 许永良, 仝德胜. 晚期日本血吸虫感染小鼠焦虑样行为学研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 622-628. |
[10] | 梁乐, 张璟, 沈玉娟, 胡媛, 曹建平. 环鸟苷酸腺苷酸促日本血吸虫感染小鼠肝虫卵肉芽肿形成及纤维化[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 441-445. |
[11] | 章孝成, 高元, 胡媛, 曹建平. 日本血吸虫感染小鼠脾多核型髓源抑制细胞变化的初步研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 330-336. |
[12] | 潘筱雯, 吴银娟, 何晴, 殷颖璇, 李学荣. 寄生蠕虫外泌体及其功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 390-395. |
[13] | 高元, 章孝成, 胡媛, 曹建平. 自然杀伤细胞抑制血吸虫病肝纤维化作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 168-174. |
[14] | 洪炀, 林矫矫. 日本血吸虫蛋白质组学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 725-730. |
[15] | 黄爱龙, 张蓓, 沈函宇, 陈果, 李静, 朱丹丹, 段义农. 日本血吸虫感染小鼠肝髓样细胞触发受体-1的表达及其功能[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 621-626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||