中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (2): 223-227.doi: 10.12140/j.issn.1000-7423.2023.02.016
马慧(), 种世桂, 陈根, 张伶慧, 秦俊梅, 赵玉敏*(
)
收稿日期:
2022-05-11
修回日期:
2022-06-21
出版日期:
2023-04-19
发布日期:
2023-04-19
通讯作者:
赵玉敏
作者简介:
马慧(1995-),女,硕士研究生,从事寄生虫病防治研究。E-mail: mahuihui0405@163.com
基金资助:
MA Hui(), CHONG Shigui, CHEN Gen, ZHANG Linghui, QIN Junmei, ZHAO Yumin*(
)
Received:
2022-05-11
Revised:
2022-06-21
Online:
2023-04-19
Published:
2023-04-19
Contact:
ZHAO Yumin
Supported by:
摘要:
多房棘球蚴病(AE)是一种在北半球高纬度地区流行、危害程度高的人兽共患寄生虫病。AE通常原发于肝组织,多房棘球蚴在患者体内呈浸润性生长,对累及脏器的形态及生理功能造成严重损伤。研究表明,多房棘球蚴及生发层细胞的增殖、机体免疫应答及免疫细胞的分化均与丝裂素原活化蛋白激酶(MAPK)、胰岛素(insulin,Ins)、程序性死亡受体-1(PD-1)、生长转化因子-β(TGF-β)等细胞信号通路有较为密切的联系。本文从相关细胞信号通路在多房棘球蚴病中对多房棘球蚴及宿主产生的免疫调节作一综述。
中图分类号:
马慧, 种世桂, 陈根, 张伶慧, 秦俊梅, 赵玉敏. 多房棘球蚴病相关细胞信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 223-227.
MA Hui, CHONG Shigui, CHEN Gen, ZHANG Linghui, QIN Junmei, ZHAO Yumin. Research progress on the cellular signal pathways associated in alveolar echinococcosis[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(2): 223-227.
图1
多房棘球蚴感染过程中相关信号通路转导示意图 MAPK:丝裂素原活化蛋白激酶;Ins:胰岛素;PD-1:程序性死亡受体-1;TGF-β:生长转化因子-β;IR:胰岛素受体;IRS:胰岛素受体底物;PI3K:磷脂酰肌醇3-激酶;AKT:蛋白激酶B;MLK:混合谱系激酶;ASK1:细胞凋亡信号调节激酶1;MKK4/7:丝裂原活化蛋白激酶激酶4/7;JNK:应激活化蛋白激酶;TAK1:生长转化因子激酶1;P38:丝裂原活化蛋白激酶激酶P38;RAF:Raf蛋白激酶;ERK1/2:细胞外调节蛋白激酶1/2;SHP2:蛋白酪氨酸磷酸酶;BATF:碱性亮氨酸拉链转录因子;Smad2/3:Smad蛋白2/3;Mφ:巨噬细胞;HSC:肝星状细胞;Treg:调节性T细胞;MFB:肌成纤维细胞。
[1] | Ni XW, Yan HB, Lou ZZ, et al. The signaling systems in Echinococcus multilocularis[J]. Chin J Parasitol Parasit Dis, 2012, 30(3): 233-237. (in Chinese) |
(倪兴维, 闫鸿斌, 娄忠子, 等. 多房棘球绦虫信号转导体系[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(3): 233-237.) | |
[2] |
Woolsey ID, Miller AL. Echinococcus granulosus sensulato and Echinococcus multilocularis: a review[J]. Res Vet Sci, 2021, 135: 517-522.
doi: 10.1016/j.rvsc.2020.11.010 pmid: 33246571 |
[3] | Zhang LH, Chen G, Chong SG, et al. Research progress on the immune regulation mechanism in alveolar echinococcosis[J]. Chin J Parasitol Parasit Dis, 2022, 40(1): 109-113, 120. (in Chinese) |
(张伶慧, 陈根, 种世桂, 等. 多房棘球蚴病中免疫细胞调控机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 109-113, 120.) | |
[4] |
Casulli A, Barth TFE, Tamarozzi F. Echinococcus multilocularis[J]. Trends Parasitol, 2019, 35(9): 738-739.
doi: S1471-4922(19)30109-6 pmid: 31182385 |
[5] |
Hemphill A, Stadelmann B, Rufener R, et al. Treatment of echinococcosis: albendazole and mebendazole--what else?[J]. Parasite, 2014, 21: 70.
doi: 10.1051/parasite/2014073 pmid: 25526545 |
[6] |
Wang J, Gottstein B. Immunoregulation in larval Echinococcus multilocularis infection[J]. Parasite Immunol, 2016, 38(3): 182-192.
doi: 10.1111/pim.12292 pmid: 26536823 |
[7] |
Chong SG, Chen G, Dang ZS, et al. Echinococcus multilocularis drives the polarization of macrophages by regulating the RhoA-MAPK signaling pathway and thus affects liver fibrosis[J]. Bioengineered, 2022, 13(4): 8747-8758.
doi: 10.1080/21655979.2022.2056690 pmid: 35324411 |
[8] |
Liang YJ, Yang WX. Kinesins in MAPK cascade: how kinesin motors are involved in the MAPK pathway?[J]. Gene, 2019, 684: 1-9.
doi: S0378-1119(18)31081-3 pmid: 30342167 |
[9] |
Sun Y, Liu WZ, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis[J]. J Recept Signal Transduct, 2015, 35(6): 600-604.
doi: 10.3109/10799893.2015.1030412 |
[10] | Wang CH, Lv HL, Jiang YF, et al. Advances in research on the MAPK signal transduction pathway of Echinococcus[J]. Chin J Parasitol Parasit Dis, 2013, 31(1): 60-63. (in Chinese) |
(王成华, 吕海龙, 姜玉峰, 等. 棘球蚴MAPK信号转导通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(1): 60-63.) | |
[11] | Zhao YM, Gui WF, Chong SG. Advances in parasitology research on the role of the MAPK signal transduction pathway[J]. J Pathog Biol, 2017, 12(5): 480-483. (in Chinese) |
(赵玉敏, 桂炜峰, 种世桂. MAPK在寄生虫领域的研究进展[J]. 中国病原生物学杂志, 2017, 12(5): 480-483.) | |
[12] |
Weiss JM, Davies LC, Karwan M, et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors[J]. J Clin Invest, 2018, 128(9): 3794-3805.
doi: 10.1172/JCI99169 pmid: 29920191 |
[13] |
Gaire BP, Song MR, Choi JW. Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization[J]. J Neuroinflammation, 2018, 15(1): 284.
doi: 10.1186/s12974-018-1323-1 |
[14] |
Moore MP, Cunningham RP, Davis RAH, et al. A dietary ketone ester mitigates histological outcomes of NAFLD and markers of fibrosis in high-fat diet fed mice[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(4): G564-G572.
doi: 10.1152/ajpgi.00259.2020 |
[15] |
Luo Y, Shao LJ, Chang JH, et al. M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion[J]. Blood Adv, 2018, 2(8): 859-870.
doi: 10.1182/bloodadvances.2018015685 pmid: 29666049 |
[16] |
Gui WF, Xu S, Dang ZS, et al. In vitro and in vivo effect of MAPK signal transduction pathway inhibitors on Echinococcus multilocularis[J]. J Parasitol, 2019, 105(1): 146-154.
doi: 10.1645/18-121 |
[17] | Dang ZS, Oku Y, Zhou XN, et al. In vitro inhibitive effect of the anticancer drug sorafenib on Echinococcus multilocularis larvae[J]. Chin J Parasitol Parasit Dis, 2017, 35(5): 417-422. |
(党志胜, 奥祐三郎, 周晓农, 等. 抗癌药物索拉非尼体外抗多房棘球蚴的效果评价(英文)[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(5): 417-422.) | |
[18] | Sun ZM, Qi YJ. Insulin signaling pathway and insulin resistance[J]. World Latest Med Inf, 2019, 19(52): 62-63. (in Chinese) |
(孙志梅, 齐亚娟. 胰岛素信号通路与胰岛素抵抗[J]. 世界最新医学信息文摘, 2019, 19(52): 62-63.) | |
[19] |
Das D, Arur S. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation[J]. Mol Reprod Dev, 2017, 84(6): 444-459.
doi: 10.1002/mrd.22806 pmid: 28379636 |
[20] |
Hemer S, Konrad C, Spiliotis M, et al. Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development[J]. BMC Biol, 2014, 12: 5.
doi: 10.1186/1741-7007-12-5 |
[21] |
Brehm K, Spiliotis M. The influence of host hormones and cytokines on Echinococcus multilocularis signalling and development[J]. Parasite, 2008, 15(3): 286-290.
pmid: 18814696 |
[22] |
Brehm K. The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host-parasite interaction[J]. Med Microbiol Immunol, 2010, 199(3): 247-259.
doi: 10.1007/s00430-010-0154-1 |
[23] |
Brehm K. Echinococcus multilocularis as an experimental model in stem cell research and molecular host-parasite interaction[J]. Parasitology, 2010, 137(3): 537-555.
doi: 10.1017/S0031182009991727 pmid: 19961652 |
[24] |
Konrad C, Kroner A, Spiliotis M, et al. Identification and molecular characterisation of a gene encoding a member of the insulin receptor family in Echinococcus multilocularis[J]. Int J Parasitol, 2003, 33(3): 301-312.
doi: 10.1016/S0020-7519(02)00265-5 |
[25] |
Ahier A, Khayath N, Vicogne J, et al. Insulin receptors and glucose uptake in the human parasite Schistosoma mansoni[J]. Parasite, 2008, 15(4): 573-579.
pmid: 19202764 |
[26] |
Miller CM, Newmark PA. An insulin-like peptide regulates size and adult stem cells in planarians[J]. Int J Dev Biol, 2012, 56(1/2/3): 75-82.
doi: 10.1387/ijdb.113443cm |
[27] |
Ai LY, Xu AT, Xu J. Roles of PD-1/PD-L1 pathway: signaling, cancer, and beyond[J]. Adv Exp Med Biol, 2020, 1248: 33-59.
doi: 10.1007/978-981-15-3266-5_3 pmid: 32185706 |
[28] |
Ghosh C, Luong G, Sun Y. A snapshot of the PD-1/PD-L1 pathway[J]. J Cancer, 2021, 12(9): 2735-2746.
doi: 10.7150/jca.57334 pmid: 33854633 |
[29] |
Hafalla JCR, Claser C, Couper KN, et al. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology[J]. PLoS Pathog, 2012, 8(2): e1002504.
doi: 10.1371/journal.ppat.1002504 |
[30] |
Bhadra R, Gigley JP, Weiss LM, et al. Control of Toxoplasma reactivation by rescue of dysfunctional CD8+ T-cell response via PD-1-PDL-1 blockade[J]. Proc Natl Acad Sci USA, 2011, 108(22): 9196-9201.
doi: 10.1073/pnas.1015298108 |
[31] |
Roy S, Gupta P, Palit S, et al. The role of PD-1 in regulation of macrophage apoptosis and its subversion by Leishmania donovani[J]. Clin Transl Immunol, 2017, 6(5): e137.
doi: 10.1038/cti.2017.12 |
[32] |
Zhang YM, Wu YL, Liu H, et al. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection[J]. Parasit Vectors, 2021, 14(1): 497.
doi: 10.1186/s13071-021-05006-8 |
[33] |
Vuitton DA, Zhang SL, Yang YR, et al. Survival strategy of Echinococcus multilocularis in the human host[J]. Parasitol Int, 2006, 55: S51-S55.
doi: 10.1016/j.parint.2005.11.007 |
[34] |
La XL, Zhang FB, Li YH, et al. Upregulation of PD-1 on CD4+CD25+T cells is associated with immunosuppression in liver of mice infected with Echinococcus multilocularis[J]. Int Immunopharmacol, 2015, 26(2): 357-366.
doi: 10.1016/j.intimp.2015.04.013 |
[35] | Jebbawi F, Bellanger AP, Lunström-Stadelmann B, et al. Innate and adaptive immune responses following PD-L1 blockade in treating chronic murine alveolar echinococcosis[J]. Parasite Immunol, 2021, 43(8): e12834. |
[36] |
Wang JH, Jebbawi F, Bellanger AP, et al. Immunotherapy of alveolar echinococcosis via PD-1/PD-L1 immune checkpoint blockade in mice[J]. Parasite Immunol, 2018, 40(12): e12596.
doi: 10.1111/pim.2018.40.issue-12 |
[37] |
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling[J]. Sci Signal, 2019, 12(570): eaav5183.
doi: 10.1126/scisignal.aav5183 |
[38] |
Zhang Y, Alexander PB, Wang XF. TGF-β family signaling in the control of cell proliferation and survival[J]. Cold Spring Harb Perspect Biol, 2017, 9(4): a022145.
doi: 10.1101/cshperspect.a022145 |
[39] |
Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873.
doi: 10.1101/cshperspect.a021873 |
[40] |
Xu FY, Liu CW, Zhou DD, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167.
doi: 10.1369/0022155415627681 pmid: 26747705 |
[41] |
Syed V. TGF-β signaling in cancer[J]. J Cell Biochem, 2016, 117(6): 1279-1287.
doi: 10.1002/jcb.25496 pmid: 26774024 |
[42] |
Zhang SL, Hüe S, Sène D, et al. Expression of major histocompatibility complex class Ⅰ chain-related molecule A, NKG2D, and transforming growth factor-beta in the liver of humans with alveolar echinococcosis: new actors in the tolerance to parasites?[J]. J Infect Dis, 2008, 197(9): 1341-1349.
doi: 10.1086/589525 |
[43] |
Nono JK, Lutz MB, Brehm K. Expansion of host regulatory T cells by secreted products of the tapeworm Echinococcus multilocularis[J]. Front Immunol, 2020, 11: 798.
doi: 10.3389/fimmu.2020.00798 |
[44] |
Wang JH, Zhang CS, Wei XF, et al. TGF-β and TGF-β/Smad signaling in the interactions between Echinococcus multilocularis and its hosts[J]. PLoS One, 2013, 8(2): e55379.
doi: 10.1371/journal.pone.0055379 |
[45] |
Pang NN, Zhang FB, Ma XM, et al. TGF-β/Smad signaling pathway regulates Th17/Treg balance during Echinococcus multilocularis infection[J]. Int Immunopharmacol, 2014, 20(1): 248-257.
doi: 10.1016/j.intimp.2014.02.038 |
[46] |
Yan C, Wang L, Li B, et al. The expression dynamics of transforming growth factor-β/Smad signaling in the liver fibrosis experimentally caused by Clonorchis sinensis[J]. Parasit Vectors, 2015, 8(1): 70.
doi: 10.1186/s13071-015-0675-y |
[47] |
Chen BL, Peng J, Li QF, et al. Exogenous bone morphogenetic protein-7 reduces hepatic fibrosis in Schistosoma japonicum-infected mice via transforming growth factor-β/Smad signaling[J]. World J Gastroenterol, 2013, 19(9): 1405-1415.
doi: 10.3748/wjg.v19.i9.1405 |
[48] |
Yin S, Chen X, Zhang J, et al. The effect of Echinococcus granulosus on spleen cells and TGF-β expression in the peripheral blood of BALB/c mice[J]. Parasite Immunol, 2017, 39(3): e12415.
doi: 10.1111/pim.12415 |
[1] | 朱爱娅, 王旭, 王江友, 王颖, 李杨, 宋珊, 耿燕, 兰子尧, 戴佳芮. 贵州省儿童多房棘球蚴病1例[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 520-523. |
[2] | 娆琬·托勒洪, 阿不都撒拉木·阿不力克木, 杨凌菲, 陈璐, 李钊, 贾芳, 宋涛. 超声表现诊断肝多房棘球蚴病的效果评价及因素分析[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 312-318. |
[3] | 李文杰, 冯萌, 程训佳. 蠕虫及其来源分子对螨性哮喘免疫调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 131-136. |
[4] | 蒉嫣, 薛垂召, 王旭, 刘白雪, 王莹, 王立英, 杨诗杰, 韩帅, 伍卫平, 肖宁. 2021年全国棘球蚴病防治进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 142-148. |
[5] | 栗根, 孙同骏, 钱亚云, 李倩倩, 杨小迪. 血吸虫及其衍生物调节免疫失调性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 85-91. |
[6] | 陈果, 朱丹丹, 段义农. 免疫调节蛋白B7家族在日本血吸虫感染免疫调节中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 774-779. |
[7] | 安秀青, 王苗苗, 周鸿乾, 孟凯, 蔡剑平, 刘光辉, 阿吉德, 杨金煜. 肝多房棘球蚴病微血管密度的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 792-797. |
[8] | 张婷婷, 杜秋沛, 郭新建, 张灵强, 王志鑫, 常正松, 赵乾, 王海久, 侯立朝. 肝多房棘球蚴病脉管侵犯的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 516-523. |
[9] | 吴亮亮, 杨凌菲, 宋涛. 不同方式建立肝多房棘球蚴感染SD大鼠模型病灶的超声及病理表现[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4): 549-552. |
[10] | 潘筱雯, 吴银娟, 何晴, 殷颖璇, 李学荣. 寄生蠕虫外泌体及其功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 390-395. |
[11] | 才仁, 任远, 米荣升, 郭刚, 齐文静, 张壮志, 郭宝平. 新疆新源县多房棘球蚴病病例特征及其病原基因多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 181-186. |
[12] | 张伶慧, 陈根, 种世桂, 沈辉, 马慧, 赵玉敏. 多房棘球蚴病中免疫细胞调控机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 109-113. |
[13] | 侯娇, 温浩, 王明坤, 李文定, 李亮, 李静, 张传山, 王慧. 多房棘球蚴感染小鼠脾脏巨噬细胞亚群及其极化表型的变化[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 771-778. |
[14] | 杨柳, 何伟, 王奇, 喻文杰, 钟波, 刘阳, 肖通光, 谢飞, 姚人新, 黄燕, 李汭芮, 廖沙, 张光葭, 王谦. 降低流浪犬密度对小型哺乳类动物棘球蚴感染情况的影响[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2): 156-160. |
[15] | 黄燕, 喻文杰, 尚婧晔, 何伟, 张光葭, 王奇, 杨柳, 廖沙, 李汭芮, 姚人新, 曾明才, 张福斌, 李树成, 刘阳, 钟波, 王谦. 阿苯达唑和吡喹酮交替联合用药治疗藏族牧民棘球蚴病的效果观察[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(2): 171-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||