中国寄生虫学与寄生虫病杂志 ›› 2023, Vol. 41 ›› Issue (2): 219-222.doi: 10.12140/j.issn.1000-7423.2023.02.015
黎嫦1,3(), 杜新月1, 严敏3, 王兆军1,2,*(
)
收稿日期:
2022-07-25
修回日期:
2022-09-16
出版日期:
2023-04-07
发布日期:
2023-04-07
通讯作者:
王兆军
作者简介:
黎嫦(1996-),女,硕士研究生,从事感染与免疫方向的研究。E-mail: lc15723435326@163.com
基金资助:
LI Chang1,3(), DU Xinyue1, YAN Min3, WANG Zhaojun1,2,*(
)
Received:
2022-07-25
Revised:
2022-09-16
Online:
2023-04-07
Published:
2023-04-07
Contact:
WANG Zhaojun
Supported by:
摘要:
中性粒细胞胞外诱捕网(NET)是中性粒细胞胞内染色质与颗粒蛋白结合后释放至胞外所形成的网状结构。研究表明,原虫和蠕虫等寄生虫感染可诱导NET形成,并在抗寄生虫的免疫防御与寄生虫感染引起的免疫病理中发挥重要作用。本文综述了NET在常见原虫和蠕虫感染中的形成机制及其作用的最新研究进展,旨在为寄生虫病预防与治疗提供新思路。
中图分类号:
黎嫦, 杜新月, 严敏, 王兆军. 中性粒细胞胞外诱捕网在寄生虫感染中的作用和机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 219-222.
LI Chang, DU Xinyue, YAN Min, WANG Zhaojun. Research advances on the role and mechanism of neutrophil extracellular traps in parasitic infection[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2023, 41(2): 219-222.
表1
原虫感染诱导NET形成的机制特点总结
原虫种类 | ROS依赖 | 染色质解聚信号 | NET类型 | NET的免疫防御效应 | 原虫的逃避免疫机制 | ||||
---|---|---|---|---|---|---|---|---|---|
NOX来源 | 线粒体来源 | NE | MPO | PAD4 | |||||
伊氏锥虫 | + | - | + | + | ND | 非裂解性NET | 捕获限制原虫运动 | TatD样脱氧核糖核酸酶 | |
布氏锥虫 | - | - | - | + | ND | 非裂解性NET | 捕获限制原虫运动 | TatD样脱氧核糖核酸酶 | |
克氏锥虫 | + | ND | ND | ND | + | 裂解性NET | 捕获限制原虫运动 | 无 | |
亚马逊利什曼原虫 | - | ND | + | ND | - | 非裂解性NET | 降低原虫活性 | 3'-核苷酸酶/核酸酶 | |
+ | - | + | - | + | 裂解性NET | ||||
杜氏利什曼原虫 | - | ND | ND | ND | ND | ND | 降低原虫活性 | 脂肽聚糖 | |
溶组织内阿米巴 | - | ND | + | ND | - | ND | 无 | 胆固醇保护作用 | |
恶性疟原虫 | ND | ND | + | ND | - | ND | ND | 无 |
[1] |
Silvestre-Roig C, Fridlender ZG, Glogauer M, et al. Neutrophil diversity in health and disease[J]. Trends Immunol, 2019, 40(7): 565-583.
doi: S1471-4906(19)30101-2 pmid: 31160207 |
[2] |
Hidalgo A, Casanova-Acebes M. Dimensions of neutrophil life and fate[J]. Semin Immunol, 2021, 57: 101506.
doi: 10.1016/j.smim.2021.101506 |
[3] |
Richardson IM, Calo CJ, Hind LE. Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection[J]. Front Immunol, 2021, 12: 661537.
doi: 10.3389/fimmu.2021.661537 |
[4] |
Liew PX, Kubes P. The neutrophil’s role during health and disease[J]. Physiol Rev, 2019, 99(2): 1223-1248.
doi: 10.1152/physrev.00012.2018 |
[5] |
Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated[J]. Nat Rev Immunol, 2007, 7(9): 678-689.
doi: 10.1038/nri2156 pmid: 17717539 |
[6] | Faurschou M, Sørensen OE, Johnsen AH, et al. Defensin-rich granules of human neutrophils: characterization of secretory properties[J]. Biochim Biophys Acta, 2002, 1591(1/2/3): 29-35. |
[7] |
Birnberg-Weiss F, Castillo LA, Pittaluga JR, et al. Modulation of neutrophil extracellular traps release by Klebsiella pneumoniae[J]. J Leukoc Biol, 2021, 109(1): 245-256.
doi: 10.1002/JLB.4MA0620-099R |
[8] |
Bruschi M, Bonanni A, Petretto A, et al. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis[J]. J Rheumatol, 2020, 47(3): 377-386.
doi: 10.3899/jrheum.181232 pmid: 31092713 |
[9] |
Silveira JS, Antunes GL, Kaiber DB, et al. Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model[J]. J Cell Physiol, 2020, 235(1): 267-280.
doi: 10.1002/jcp.28966 pmid: 31206674 |
[10] | Xie NX, Zhang YX, Li TT, et al. Research progress of neutrophils in sepsis[J]. Chin J Immunol, 2022, 38(14): 1767-1776. (in Chinese) |
(谢楠茜, 张亚星, 李甜甜, 等. 中性粒细胞在脓毒症中的作用及研究进展[J]. 中国免疫学杂志, 2022, 38(14): 1767-1776.) | |
[11] |
Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J]. J Cell Biol, 2010, 191(3): 677-691.
doi: 10.1083/jcb.201006052 pmid: 20974816 |
[12] |
Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2817-2822.
doi: 10.1073/pnas.1414055112 pmid: 25730848 |
[13] |
Parker H, Dragunow M, Hampton MB, et al. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus[J]. J Leukoc Biol, 2012, 92(4): 841-849.
doi: 10.1189/jlb.1211601 |
[14] |
Wang YM, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation[J]. J Cell Biol, 2009, 184(2): 205-213.
doi: 10.1083/jcb.200806072 pmid: 19153223 |
[15] |
Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol, 2010, 185(12):7413-7425.
doi: 10.4049/jimmunol.1000675 pmid: 21098229 |
[16] |
Yipp BG, Kubes P. NETosis: how vital is it?[J]. Blood, 2013, 122(16): 2784-2794.
doi: 10.1182/blood-2013-04-457671 pmid: 24009232 |
[17] |
Mendoza-Roldan JA, Votýpka J, Bandi C, et al. Leishmania tarentolae: a new frontier in the epidemiology and control of the leishmaniases[J]. Transbound Emerg Dis, 2022, 69(5): e1326-e1337.
doi: 10.1111/tbed.14660 pmid: 35839512 |
[18] |
Walter K, John CC. Malaria[J]. JAMA, 2022, 327(6): 597.
doi: 10.1001/jama.2021.21468 pmid: 35133414 |
[19] |
Sousa-Rocha D, Thomaz-Tobias M, Diniz LFA, et al. Trypanosoma cruzi and its soluble antigens induce NET release by stimulating toll-like receptors[J]. PLoS One, 2015, 10(10): e0139569.
doi: 10.1371/journal.pone.0139569 |
[20] |
Wei R, Li X, Wang XC, et al. Trypanosoma evansi triggered neutrophil extracellular traps formation dependent on myeloperoxidase, neutrophil elastase, and extracellular signal-regulated kinase 1/2 signaling pathways[J]. Vet Parasitol, 2021, 296: 109502.
doi: 10.1016/j.vetpar.2021.109502 pmid: 34214944 |
[21] |
Grob D, Conejeros I, Velásquez ZD, et al. Trypanosoma brucei brucei induces polymorphonuclear neutrophil activation and neutrophil extracellular traps release[J]. Front Immunol, 2020, 11: 559561.
doi: 10.3389/fimmu.2020.559561 |
[22] |
Rochael NC, Guimarães-Costa AB, Nascimento MTC, et al. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites[J]. Sci Rep, 2015, 5: 18302.
doi: 10.1038/srep18302 |
[23] |
Guimarães-Costa AB, Nascimento MTC, Froment GS, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps[J]. Proc Natl Acad Sci USA, 2009, 106(16): 6748-6753.
doi: 10.1073/pnas.0900226106 pmid: 19346483 |
[24] |
Gabriel C, McMaster WR, Girard D, et al. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps[J]. J Immunol, 2010, 185(7): 4319-4327.
doi: 10.4049/jimmunol.1000893 pmid: 20826753 |
[25] |
Kho S, Minigo G, Andries B, et al. Circulating neutrophil extracellular traps and neutrophil activation are increased in proportion to disease severity in human malaria[J]. J Infect Dis, 2019, 219(12): 1994-2004.
doi: 10.1093/infdis/jiy661 pmid: 30452670 |
[26] |
Rodrigues DAS, Prestes EB, Gama AMS, et al. CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes[J]. PLoS Pathog, 2020, 16(8): e1008230.
doi: 10.1371/journal.ppat.1008230 |
[27] |
Knackstedt SL, Georgiadou A, Apel F, et al. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria[J]. Sci Immunol, 2019, 4(40): eaaw0336.
doi: 10.1126/sciimmunol.aaw0336 |
[28] |
Zhang K, Jiang N, Chen HY, et al. TatD DNases of African trypanosomes confer resistance to host neutrophil extracellular traps[J]. Sci Chin Life Sci, 2021, 64(4): 621-632.
doi: 10.1007/s11427-020-1854-2 |
[29] |
Zhou YP, Xiao B, Jiang N, et al. Expression and functional analysis of the TatD-like DNase of Plasmodium knowlesi[J]. Parasit Vectors, 2018, 11(1): 629.
doi: 10.1186/s13071-018-3251-4 |
[30] |
Freitas-Mesquita AL, Dick CF, Dos-Santos ALA, et al. Cloning, expression and purification of 3'-nucleotidase/nuclease, an enzyme responsible for the Leishmania escape from neutrophil extracellular traps[J]. Mol Biochem Parasitol, 2019, 229: 6-14.
doi: 10.1016/j.molbiopara.2019.02.004 |
[31] |
Chagas AC, Oliveira F, Debrabant A, et al. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits Ⅻa contact activation in human plasma[J]. PLoS Pathog, 2014, 10(2): e1003923.
doi: 10.1371/journal.ppat.1003923 |
[32] |
Neumann A, Völlger L, Berends ETM, et al. Novel role of the antimicrobial peptide LL-37 in the protection of neutrophil extracellular traps against degradation by bacterial nucleases[J]. J Innate Immun, 2014, 6(6): 860-868.
doi: 10.1159/000363699 pmid: 25012862 |
[33] |
Ávila EE, Salaiza N, Pulido J, et al. Entamoeba histolytica trophozoites and lipopeptidophosphoglycan trigger human neutrophil extracellular traps[J]. PLoS One, 2016, 11(7): e0158979.
doi: 10.1371/journal.pone.0158979 |
[34] |
McCoy CJ, Reaves BJ, Giguère S, et al. Human leukocytes kill Brugia malayi microfilariae independently of DNA-based extracellular trap release[J]. PLoS Negl Trop Dis, 2017, 11(1): e0005279.
doi: 10.1371/journal.pntd.0005279 |
[35] |
Chuah C, Jones MK, Burke ML, et al. Defining a pro-inflammatory neutrophil phenotype in response to schistosome eggs[J]. Cell Microbiol, 2014, 16(11): 1666-1677.
doi: 10.1111/cmi.12316 pmid: 24898449 |
[36] |
Bonne-Année S, Kerepesi LA, Hess JA, et al. Human and mouse macrophages collaborate with neutrophils to kill larval Strongyloides stercoralis[J]. Infect Immun, 2013, 81(9): 3346-3355.
doi: 10.1128/IAI.00625-13 pmid: 23798541 |
[37] |
Bonne-Année S, Kerepesi LA, Hess JA, et al. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis[J]. Microbes Infect, 2014, 16(6): 502-511.
doi: 10.1016/j.micinf.2014.02.012 pmid: 24642003 |
[38] |
Kamtchum-Tatuene J, Makepeace BL, Benjamin L, et al. The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections[J]. Curr Opin Infect Dis, 2017, 30(1): 108-116.
doi: 10.1097/QCO.0000000000000342 pmid: 27849636 |
[39] | Bouchery T, Lefoulon E, Karadjian G, et al. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis[J]. Clin Microbiol Infect, 2013, 19(2): 131-140. |
[40] |
Tamarozzi F, Turner JD, Pionnier N, et al. Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis[J]. Sci Rep, 2016, 6: 35559.
doi: 10.1038/srep35559 pmid: 27752109 |
[41] | Sun YJ, Li ZQ, Lv FL. Research progress on the immunopathological mechanism of Schistosoma japonicum egg-induced granuloma[J]. Chin J Parasitol Parasit Dis, 2019, 37(6): 713-717, 722. (in Chinese) |
(孙钰浚, 李钊琪, 吕芳丽. 日本血吸虫虫卵肉芽肿免疫病理机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(6): 713-717, 722.) |
[1] | 李淑凝, 李汶霖, 沈海娥, 王洋, 田喜凤. 蓝氏贾第鞭毛虫滋养体体外诱导中性粒细胞胞外诱捕网的形成[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 455-460. |
[2] | 危芙蓉, 杨玥涛, 汪俊云, 王燕娟, 潘佳明, 曹建平. 婴儿利什曼原虫感染小鼠体内中性粒细胞形成胞外诱捕网能力的研究[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(1): 18-22. |
[3] | 张雅兰, 朱岩昆, 陈伟奇, 邓艳, 蔺西萌, 李蓬, 张红卫, 许汴利. 2015年河南省城镇地区人体肠道蠕虫感染现状调查[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(2): 135-139. |
[4] | 司徒永立1,2, 邵正1, 邓莉1, 隋细香1, 李海舰1,3, 许琴英1, 何庆丰1, 彭礼飞1,2,3*. 毛首鞭形线虫丝氨酸蛋白酶抑制剂TtSerpin1对蛋白酶的抑制作用[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(4): 6-342-346. |
[5] | 唐春莲1,申志琴1,雷家慧2,王力霞1*. 蠕虫感染在预防与治疗炎症性肠病中的作用及机制[J]. 中国寄生虫学与寄生虫病杂志, 2016, 34(6): 17-571-576. |
[6] | 赵建玲;高兴政;屈明. 中性粒细胞杀灭阴道毛滴虫作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2008, 26(5): 10-369. |
[7] | 牛弘;刘岩琳;杨晓杰;徐子茗;孟迎展;陈艳;杨玉玲;杨东霞;赵力宏. 哈尔滨市居民肠道蠕虫感染现状调查[J]. 中国寄生虫学与寄生虫病杂志, 2003, 21(2): 23-127. |
[8] | 郝文波;徐伟文;李明;陈白虹;王萍;李中齐. 细胞粘附因子-1与恶性疟原虫感染红细胞结合位点的鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2002, 20(3): 1-132. |
[9] | 陆中承,吴品霞. 间日疟并发休克、虚性脑膜炎一例[J]. 中国寄生虫学与寄生虫病杂志, 1996, 14(3): 180-180. |
[10] | 许隆祺,蒋则孝,余森海,徐淑惠,孟宁,甘耀成,汪维周,李远璧,杨家伦,马万海,吴维铎. 全国人体寄生虫分布调查——人体蠕虫感染的地理分布特点和规律[J]. 中国寄生虫学与寄生虫病杂志, 1995, 13(2): 99-103. |
[11] | 秦百顺. 幼儿黑热病一例报告[J]. 中国寄生虫学与寄生虫病杂志, 1995, 13(2): 153-153. |
[12] | 张兆祥. 蛲虫寄生阑尾的临床病理观察[J]. 中国寄生虫学与寄生虫病杂志, 1995, 13(1): 81-81. |
[13] | 莎仁,张斌,刘清淮,郭天金,单苒,霍守梁. 内蒙古自治区人群的肠道原虫感染情况[J]. 中国寄生虫学与寄生虫病杂志, 1994, 12(S1): 106-108. |
[14] | 吴月华,吴献洪,郭在宣,马明跃,王晓胜,袁小明,安少军. 青海省格尔木市人群寄生虫感染情况的调查[J]. 中国寄生虫学与寄生虫病杂志, 1994, 12(S1): 244-244. |
[15] | 陈国荣,黄启金,吴英群. 甲苯达唑致腹痛和蛔虫游走18例报告[J]. 中国寄生虫学与寄生虫病杂志, 1994, 12(S1): 259-259. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||