[1] | Silvestre-Roig C, Fridlender ZG, Glogauer M, et al. Neutrophil diversity in health and disease[J]. Trends Immunol, 2019, 40(7): 565-583. | [2] | Hidalgo A, Casanova-Acebes M. Dimensions of neutrophil life and fate[J]. Semin Immunol, 2021, 57: 101506. | [3] | Richardson IM, Calo CJ, Hind LE. Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection[J]. Front Immunol, 2021, 12: 661537. | [4] | Liew PX, Kubes P. The neutrophil’s role during health and disease[J]. Physiol Rev, 2019, 99(2): 1223-1248. | [5] | Ley K, Laudanna C, Cybulsky MI, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated[J]. Nat Rev Immunol, 2007, 7(9): 678-689. | [6] | Faurschou M, S?rensen OE, Johnsen AH, et al. Defensin-rich granules of human neutrophils: characterization of secretory properties[J]. Biochim Biophys Acta, 2002, 1591(1/2/3): 29-35. | [7] | Birnberg-Weiss F, Castillo LA, Pittaluga JR, et al. Modulation of neutrophil extracellular traps release by Klebsiella pneumoniae[J]. J Leukoc Biol, 2021, 109(1): 245-256. | [8] | Bruschi M, Bonanni A, Petretto A, et al. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis[J]. J Rheumatol, 2020, 47(3): 377-386. | [9] | Silveira JS, Antunes GL, Kaiber DB, et al. Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model[J]. J Cell Physiol, 2020, 235(1): 267-280. | [10] | Xie NX, Zhang YX, Li TT, et al. Research progress of neutrophils in sepsis[J]. Chin J Immunol, 2022, 38(14): 1767-1776. (in Chinese) | | (谢楠茜, 张亚星, 李甜甜, 等. 中性粒细胞在脓毒症中的作用及研究进展[J]. 中国免疫学杂志, 2022, 38(14): 1767-1776.) | [11] | Papayannopoulos V, Metzler KD, Hakkim A, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J]. J Cell Biol, 2010, 191(3): 677-691. | [12] | Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2817-2822. | [13] | Parker H, Dragunow M, Hampton MB, et al. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus[J]. J Leukoc Biol, 2012, 92(4): 841-849. | [14] | Wang YM, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation[J]. J Cell Biol, 2009, 184(2): 205-213. | [15] | Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol, 2010, 185(12):7413-7425. | [16] | Yipp BG, Kubes P. NETosis: how vital is it?[J]. Blood, 2013, 122(16): 2784-2794. | [17] | Mendoza-Roldan JA, Votypka J, Bandi C, et al. Leishmania tarentolae: a new frontier in the epidemiology and control of the leishmaniases[J]. Transbound Emerg Dis, 2022, 69(5): e1326-e1337. | [18] | Walter K, John CC. Malaria[J]. JAMA, 2022, 327(6): 597. | [19] | Sousa-Rocha D, Thomaz-Tobias M, Diniz LFA, et al. Trypanosoma cruzi and its soluble antigens induce NET release by stimulating toll-like receptors[J]. PLoS One, 2015, 10(10): e0139569. | [20] | Wei R, Li X, Wang XC, et al. Trypanosoma evansi triggered neutrophil extracellular traps formation dependent on myeloperoxidase, neutrophil elastase, and extracellular signal-regulated kinase 1/2 signaling pathways[J]. Vet Parasitol, 2021, 296: 109502. | [21] | Grob D, Conejeros I, Velásquez ZD, et al. Trypanosoma brucei brucei induces polymorphonuclear neutrophil activation and neutrophil extracellular traps release[J]. Front Immunol, 2020, 11: 559561. | [22] | Rochael NC, Guimar?es-Costa AB, Nascimento MTC, et al. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites[J]. Sci Rep, 2015, 5: 18302. | [23] | Guimar?es-Costa AB, Nascimento MTC, Froment GS, et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps[J]. Proc Natl Acad Sci USA, 2009, 106(16): 6748-6753. | [24] | Gabriel C, McMaster WR, Girard D, et al. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps[J]. J Immunol, 2010, 185(7): 4319-4327. | [25] | Kho S, Minigo G, Andries B, et al. Circulating neutrophil extracellular traps and neutrophil activation are increased in proportion to disease severity in human malaria[J]. J Infect Dis, 2019, 219(12): 1994-2004. | [26] | Rodrigues DAS, Prestes EB, Gama AMS, et al. CXCR4 and MIF are required for neutrophil extracellular trap release triggered by Plasmodium-infected erythrocytes[J]. PLoS Pathog, 2020, 16(8): e1008230. | [27] | Knackstedt SL, Georgiadou A, Apel F, et al. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria[J]. Sci Immunol, 2019, 4(40): eaaw0336. | [28] | Zhang K, Jiang N, Chen HY, et al. TatD DNases of African trypanosomes confer resistance to host neutrophil extracellular traps[J]. Sci Chin Life Sci, 2021, 64(4): 621-632. | [29] | Zhou YP, Xiao B, Jiang N, et al. Expression and functional analysis of the TatD-like DNase of Plasmodium knowlesi[J]. Parasit Vectors, 2018, 11(1): 629. | [30] | Freitas-Mesquita AL, Dick CF, Dos-Santos ALA, et al. Cloning, expression and purification of 3'-nucleotidase/nuclease, an enzyme responsible for the Leishmania escape from neutrophil extracellular traps[J]. Mol Biochem Parasitol, 2019, 229: 6-14. | [31] | Chagas AC, Oliveira F, Debrabant A, et al. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits Ⅻa contact activation in human plasma[J]. PLoS Pathog, 2014, 10(2): e1003923. | [32] | Neumann A, V?llger L, Berends ETM, et al. Novel role of the antimicrobial peptide LL-37 in the protection of neutrophil extracellular traps against degradation by bacterial nucleases[J]. J Innate Immun, 2014, 6(6): 860-868. | [33] | ávila EE, Salaiza N, Pulido J, et al. Entamoeba histolytica trophozoites and lipopeptidophosphoglycan trigger human neutrophil extracellular traps[J]. PLoS One, 2016, 11(7): e0158979. | [34] | McCoy CJ, Reaves BJ, Giguère S, et al. Human leukocytes kill Brugia malayi microfilariae independently of DNA-based extracellular trap release[J]. PLoS Negl Trop Dis, 2017, 11(1): e0005279. | [35] | Chuah C, Jones MK, Burke ML, et al. Defining a pro-inflammatory neutrophil phenotype in response to schistosome eggs[J]. Cell Microbiol, 2014, 16(11): 1666-1677. | [36] | Bonne-Année S, Kerepesi LA, Hess JA, et al. Human and mouse macrophages collaborate with neutrophils to kill larval Strongyloides stercoralis[J]. Infect Immun, 2013, 81(9): 3346-3355. | [37] | Bonne-Année S, Kerepesi LA, Hess JA, et al. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis[J]. Microbes Infect, 2014, 16(6): 502-511. | [38] | Kamtchum-Tatuene J, Makepeace BL, Benjamin L, et al. The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections[J]. Curr Opin Infect Dis, 2017, 30(1): 108-116. | [39] | Bouchery T, Lefoulon E, Karadjian G, et al. The symbiotic role of Wolbachia in Onchocercidae and its impact on filariasis[J]. Clin Microbiol Infect, 2013, 19(2): 131-140. | [40] | Tamarozzi F, Turner JD, Pionnier N, et al. Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis[J]. Sci Rep, 2016, 6: 35559. | [41] | Sun YJ, Li ZQ, Lv FL. Research progress on the immunopathological mechanism of Schistosoma japonicum egg-induced granuloma[J]. Chin J Parasitol Parasit Dis, 2019, 37(6): 713-717, 722. (in Chinese) | | (孙钰浚, 李钊琪, 吕芳丽. 日本血吸虫虫卵肉芽肿免疫病理机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(6): 713-717, 722.) |
|