[1] | Ni XW, Yan HB, Lou ZZ, et al. The signaling systems in Echinococcus multilocularis[J]. Chin J Parasitol Parasit Dis, 2012, 30(3): 233-237. (in Chinese) | | (倪兴维, 闫鸿斌, 娄忠子, 等. 多房棘球绦虫信号转导体系[J]. 中国寄生虫学与寄生虫病杂志, 2012, 30(3): 233-237.) | [2] | Woolsey ID, Miller AL. Echinococcus granulosus sensulato and Echinococcus multilocularis: a review[J]. Res Vet Sci, 2021, 135: 517-522. | [3] | Zhang LH, Chen G, Chong SG, et al. Research progress on the immune regulation mechanism in alveolar echinococcosis[J]. Chin J Parasitol Parasit Dis, 2022, 40(1): 109-113, 120. (in Chinese) | | (张伶慧, 陈根, 种世桂, 等. 多房棘球蚴病中免疫细胞调控机制的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 109-113, 120.) | [4] | Casulli A, Barth TFE, Tamarozzi F. Echinococcus multilocularis[J]. Trends Parasitol, 2019, 35(9): 738-739. | [5] | Hemphill A, Stadelmann B, Rufener R, et al. Treatment of echinococcosis: albendazole and mebendazole--what else?[J]. Parasite, 2014, 21: 70. | [6] | Wang J, Gottstein B. Immunoregulation in larval Echinococcus multilocularis infection[J]. Parasite Immunol, 2016, 38(3): 182-192. | [7] | Chong SG, Chen G, Dang ZS, et al. Echinococcus multilocularis drives the polarization of macrophages by regulating the RhoA-MAPK signaling pathway and thus affects liver fibrosis[J]. Bioengineered, 2022, 13(4): 8747-8758. | [8] | Liang YJ, Yang WX. Kinesins in MAPK cascade: how kinesin motors are involved in the MAPK pathway?[J]. Gene, 2019, 684: 1-9. | [9] | Sun Y, Liu WZ, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis[J]. J Recept Signal Transduct, 2015, 35(6): 600-604. | [10] | Wang CH, Lv HL, Jiang YF, et al. Advances in research on the MAPK signal transduction pathway of Echinococcus[J]. Chin J Parasitol Parasit Dis, 2013, 31(1): 60-63. (in Chinese) | | (王成华, 吕海龙, 姜玉峰, 等. 棘球蚴MAPK信号转导通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2013, 31(1): 60-63.) | [11] | Zhao YM, Gui WF, Chong SG. Advances in parasitology research on the role of the MAPK signal transduction pathway[J]. J Pathog Biol, 2017, 12(5): 480-483. (in Chinese) | | (赵玉敏, 桂炜峰, 种世桂. MAPK在寄生虫领域的研究进展[J]. 中国病原生物学杂志, 2017, 12(5): 480-483.) | [12] | Weiss JM, Davies LC, Karwan M, et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors[J]. J Clin Invest, 2018, 128(9): 3794-3805. | [13] | Gaire BP, Song MR, Choi JW. Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization[J]. J Neuroinflammation, 2018, 15(1): 284. | [14] | Moore MP, Cunningham RP, Davis RAH, et al. A dietary ketone ester mitigates histological outcomes of NAFLD and markers of fibrosis in high-fat diet fed mice[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(4): G564-G572. | [15] | Luo Y, Shao LJ, Chang JH, et al. M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion[J]. Blood Adv, 2018, 2(8): 859-870. | [16] | Gui WF, Xu S, Dang ZS, et al. In vitro and in vivo effect of MAPK signal transduction pathway inhibitors on Echinococcus multilocularis[J]. J Parasitol, 2019, 105(1): 146-154. | [17] | Dang ZS, Oku Y, Zhou XN, et al. In vitro inhibitive effect of the anticancer drug sorafenib on Echinococcus multilocularis larvae[J]. Chin J Parasitol Parasit Dis, 2017, 35(5): 417-422. | | (党志胜, 奥祐三郎, 周晓农, 等. 抗癌药物索拉非尼体外抗多房棘球蚴的效果评价(英文)[J]. 中国寄生虫学与寄生虫病杂志, 2017, 35(5): 417-422.) | [18] | Sun ZM, Qi YJ. Insulin signaling pathway and insulin resistance[J]. World Latest Med Inf, 2019, 19(52): 62-63. (in Chinese) | | (孙志梅, 齐亚娟. 胰岛素信号通路与胰岛素抵抗[J]. 世界最新医学信息文摘, 2019, 19(52): 62-63.) | [19] | Das D, Arur S. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation[J]. Mol Reprod Dev, 2017, 84(6): 444-459. | [20] | Hemer S, Konrad C, Spiliotis M, et al. Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development[J]. BMC Biol, 2014, 12: 5. | [21] | Brehm K, Spiliotis M. The influence of host hormones and cytokines on Echinococcus multilocularis signalling and development[J]. Parasite, 2008, 15(3): 286-290. | [22] | Brehm K. The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host-parasite interaction[J]. Med Microbiol Immunol, 2010, 199(3): 247-259. | [23] | Brehm K. Echinococcus multilocularis as an experimental model in stem cell research and molecular host-parasite interaction[J]. Parasitology, 2010, 137(3): 537-555. | [24] | Konrad C, Kroner A, Spiliotis M, et al. Identification and molecular characterisation of a gene encoding a member of the insulin receptor family in Echinococcus multilocularis[J]. Int J Parasitol, 2003, 33(3): 301-312. | [25] | Ahier A, Khayath N, Vicogne J, et al. Insulin receptors and glucose uptake in the human parasite Schistosoma mansoni[J]. Parasite, 2008, 15(4): 573-579. | [26] | Miller CM, Newmark PA. An insulin-like peptide regulates size and adult stem cells in planarians[J]. Int J Dev Biol, 2012, 56(1/2/3): 75-82. | [27] | Ai LY, Xu AT, Xu J. Roles of PD-1/PD-L1 pathway: signaling, cancer, and beyond[J]. Adv Exp Med Biol, 2020, 1248: 33-59. | [28] | Ghosh C, Luong G, Sun Y. A snapshot of the PD-1/PD-L1 pathway[J]. J Cancer, 2021, 12(9): 2735-2746. | [29] | Hafalla JCR, Claser C, Couper KN, et al. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology[J]. PLoS Pathog, 2012, 8(2): e1002504. | [30] | Bhadra R, Gigley JP, Weiss LM, et al. Control of Toxoplasma reactivation by rescue of dysfunctional CD8+ T-cell response via PD-1-PDL-1 blockade[J]. Proc Natl Acad Sci USA, 2011, 108(22): 9196-9201. | [31] | Roy S, Gupta P, Palit S, et al. The role of PD-1 in regulation of macrophage apoptosis and its subversion by Leishmania donovani[J]. Clin Transl Immunol, 2017, 6(5): e137. | [32] | Zhang YM, Wu YL, Liu H, et al. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection[J]. Parasit Vectors, 2021, 14(1): 497. | [33] | Vuitton DA, Zhang SL, Yang YR, et al. Survival strategy of Echinococcus multilocularis in the human host[J]. Parasitol Int, 2006, 55: S51-S55. | [34] | La XL, Zhang FB, Li YH, et al. Upregulation of PD-1 on CD4+CD25+T cells is associated with immunosuppression in liver of mice infected with Echinococcus multilocularis[J]. Int Immunopharmacol, 2015, 26(2): 357-366. | [35] | Jebbawi F, Bellanger AP, Lunstr?m-Stadelmann B, et al. Innate and adaptive immune responses following PD-L1 blockade in treating chronic murine alveolar echinococcosis[J]. Parasite Immunol, 2021, 43(8): e12834. | [36] | Wang JH, Jebbawi F, Bellanger AP, et al. Immunotherapy of alveolar echinococcosis via PD-1/PD-L1 immune checkpoint blockade in mice[J]. Parasite Immunol, 2018, 40(12): e12596. | [37] | Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling[J]. Sci Signal, 2019, 12(570): eaav5183. | [38] | Zhang Y, Alexander PB, Wang XF. TGF-β family signaling in the control of cell proliferation and survival[J]. Cold Spring Harb Perspect Biol, 2017, 9(4): a022145. | [39] | Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873. | [40] | Xu FY, Liu CW, Zhou DD, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167. | [41] | Syed V. TGF-β signaling in cancer[J]. J Cell Biochem, 2016, 117(6): 1279-1287. | [42] | Zhang SL, Hüe S, Sène D, et al. Expression of major histocompatibility complex class Ⅰ chain-related molecule A, NKG2D, and transforming growth factor-beta in the liver of humans with alveolar echinococcosis: new actors in the tolerance to parasites?[J]. J Infect Dis, 2008, 197(9): 1341-1349. | [43] | Nono JK, Lutz MB, Brehm K. Expansion of host regulatory T cells by secreted products of the tapeworm Echinococcus multilocularis[J]. Front Immunol, 2020, 11: 798. | [44] | Wang JH, Zhang CS, Wei XF, et al. TGF-β and TGF-β/Smad signaling in the interactions between Echinococcus multilocularis and its hosts[J]. PLoS One, 2013, 8(2): e55379. | [45] | Pang NN, Zhang FB, Ma XM, et al. TGF-β/Smad signaling pathway regulates Th17/Treg balance during Echinococcus multilocularis infection[J]. Int Immunopharmacol, 2014, 20(1): 248-257. | [46] | Yan C, Wang L, Li B, et al. The expression dynamics of transforming growth factor-β/Smad signaling in the liver fibrosis experimentally caused by Clonorchis sinensis[J]. Parasit Vectors, 2015, 8(1): 70. | [47] | Chen BL, Peng J, Li QF, et al. Exogenous bone morphogenetic protein-7 reduces hepatic fibrosis in Schistosoma japonicum-infected mice via transforming growth factor-β/Smad signaling[J]. World J Gastroenterol, 2013, 19(9): 1405-1415. | [48] | Yin S, Chen X, Zhang J, et al. The effect of Echinococcus granulosus on spleen cells and TGF-β expression in the peripheral blood of BALB/c mice[J]. Parasite Immunol, 2017, 39(3): e12415. |
|