中国寄生虫学与寄生虫病杂志 ›› 2021, Vol. 39 ›› Issue (5): 703-709.doi: 10.12140/j.issn.1000-7423.2021.05.020
收稿日期:
2021-03-28
修回日期:
2021-04-25
出版日期:
2021-10-30
发布日期:
2021-11-10
通讯作者:
吕志跃
作者简介:
胡玥(1993-),女,博士研究生,从事病原生物学研究。E-mail: huyue43@mail2.sysu.edu.cn
基金资助:
HU Yue1(), LV Zhi-yue1,2,3,*(
)
Received:
2021-03-28
Revised:
2021-04-25
Online:
2021-10-30
Published:
2021-11-10
Contact:
LV Zhi-yue
Supported by:
摘要:
代谢组学是继基因组学、转录组学和蛋白质组学之后迅速发展起来的一种新兴组学,由于其独特的优势,在疾病早期诊断、药物靶点发现及动植物代谢研究等各个领域中均有应用。如今在寄生虫研究领域中的应用也逐渐增多,主要集中于寄生虫宿主的代谢研究、寄生虫病诊断生物标志物的筛选以及揭示寄生虫病治疗药物的作用机制等方面,为探究寄生虫与宿主相互作用、寄生虫病诊疗等方面提供了新的思路。本文通过对代谢组学及其研究方法、代谢组学在医学蠕虫研究中的应用进展进行综述,以期为其在寄生虫研究领域的广泛应用提供参考。
中图分类号:
胡玥, 吕志跃. 代谢组学在医学蠕虫研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 703-709.
HU Yue, LV Zhi-yue. Application of metabolomics in research of medical helminths[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2021, 39(5): 703-709.
[1] |
Bethony J, Brooker S, Albonico M, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm[J]. Lancet, 2006, 367(9521):1521-1532.
doi: 10.1016/S0140-6736(06)68653-4 |
[2] |
Keiser J, Utzinger J. Emerging foodborne trematodiasis[J]. Emerg Infect Dis, 2005, 11(10):1507-1514.
doi: 10.3201/eid1110.050614 |
[3] |
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189.
pmid: 10598751 |
[4] |
Fiehn O, Kopka J, Dörmann P, et al. Metabolite profiling for plant functional genomics[J]. Nat Biotechnol, 2000, 18(11):1157-1161.
pmid: 11062433 |
[5] | Taylor J, King RD, Altmann T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics, 2002, 18(Suppl 2):S241-S248. |
[6] | Qian G, Wang YL. Serum metabolomics of early postoperative cognitive dysfunction in elderly patients using liquid chromatography and Q-TOF mass spectrometry[J]. Oxid Med Cell Longev, 2020, 2020:8957541. |
[7] |
Prosser GA, de Carvalho LP. Metabolomics reveal d-alanine: D-alanine ligase as the target of d-cycloserine in Mycobacterium tuberculosis[J]. ACS Med Chem Lett, 2013, 4(12):1233-1237.
pmid: 24478820 |
[8] |
Ganguly S, Mitra T, Mahanty A, et al. A comparative metabolomics study on anadromous clupeid Tenualosa ilisha for better understanding the influence of habitat on nutritional composition[J]. Metabolomics, 2020, 16(3):30.
doi: 10.1007/s11306-020-01655-5 |
[9] | Yang CX, Zhao WN, Wang YN, et al. Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi[J]. Microorganisms, 2020, 8(3):E327. |
[10] |
Kokova D, Mayboroda OA. Twenty years on: metabolomics in helminth research[J]. Trends Parasitol, 2019, 35(4):282-288.
doi: S1471-4922(19)30027-3 pmid: 30824203 |
[11] |
O′Sullivan WJ, Edwards MR, Norton RS. The application of nuclear magnetic resonance spectroscopy to parasite metabolism[J]. Parasitol Today, 1989, 5(3):79-82.
doi: 10.1016/0169-4758(89)90007-0 |
[12] |
Kamleh MA, Dow JA, Watson DG. Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems[J]. Brief Funct Genomic Proteomic, 2009, 8(1):28-48.
doi: 10.1093/bfgp/eln052 |
[13] |
Na J, Khan A, Kim JK, et al. Discovery of metabolic alterations in the serum of patients infected with Plasmodium spp. by high-resolution metabolomics[J]. Metabolomics, 2019, 16(1):9.
doi: 10.1007/s11306-019-1630-2 |
[14] |
Hargrave KE, Woods S, Millington O, et al. Multi-omics studies demonstrate Toxoplasma gondii-induced metabolic reprogramming of murine dendritic cells[J]. Front Cell Infect Microbiol, 2019, 9:309.
doi: 10.3389/fcimb.2019.00309 |
[15] | Johnston K, Kim DH, Kerkhoven EJ, et al. Mapping the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U- 13C-labelled substrates and LC-MS[J]. Biosci Rep, 2019, 39(5): BSR20181601. |
[16] | Arjmand M, Madrakian A, Khalili G, et al. Metabolomics-based study of logarithmic and stationary phases of promastigotes in Leishmania major by 1H NMR spectroscopy[J]. Iran Biomed J, 2016, 20(2):77-83. |
[17] |
Massa DR, Chejlava MJ, Fried B, et al. High performance column liquid chromatographic analysis of selected carboxylic acids in Biomphalaria glabrata patently infected with Schistosoma mansoni[J]. Parasitol Res, 2007, 101(4):925-928.
doi: 10.1007/s00436-007-0563-2 |
[18] |
Abou Elseoud SM, Abdel Fattah NS, Ezz El Din HM, et al. Potential correlation between carboxylic acid metabolites in Biomphalaria alexandrina snails after exposure to Schistosoma mansoni infection[J]. Korean J Parasitol, 2012, 50(2):119-126.
doi: 10.3347/kjp.2012.50.2.119 pmid: 22711922 |
[19] |
Tunholi-Alves VM, Tunholi VM, Garcia J, et al. Unveiling the oxidative metabolism of Achatina fulica (Mollusca ∶ Gastropoda) experimentally infected to Angiostrongylus cantonensis (Nematoda ∶ Metastrongylidae)[J]. Parasitol Res, 2018, 117(6):1773-1781.
doi: 10.1007/s00436-018-5859-x pmid: 29680939 |
[20] |
Wang YL, Holmes E, Nicholson JK, et al. Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification[J]. Proc Natl Acad Sci USA, 2004, 101(34):12676-12681.
doi: 10.1073/pnas.0404878101 |
[21] |
Li JV, Holmes E, Saric J, et al. Metabolic profiling of a Schistosoma mansoni infection in mouse tissues using magic angle spinning-nuclear magnetic resonance spectroscopy[J]. Int J Parasitol, 2009, 39(5):547-558.
doi: 10.1016/j.ijpara.2008.10.010 |
[22] |
Garcia-Perez I, Angulo S, Utzinger J, et al. Chemometric and biological validation of a capillary electrophoresis metabolomic experiment of Schistosoma mansoni infection in mice[J]. Electrophoresis, 2010, 31(14):2338-2348.
doi: 10.1002/elps.200900523 pmid: 20583011 |
[23] |
Garcia-Perez I, Couto Alves A, Angulo S, et al. Bidirectional correlation of NMR and capillary electrophoresis fingerprints: a new approach to investigating Schistosoma mansoni infection in a mouse model[J]. Anal Chem, 2010, 82(1):203-210.
doi: 10.1021/ac901728w pmid: 19961175 |
[24] |
Balog CI, Meissner A, Göraler S, et al. Metabonomic investigation of human Schistosoma mansoni infection[J]. Mol Biosyst, 2011, 7(5):1473-1480.
doi: 10.1039/c0mb00262c |
[25] |
Gouveia LR, Santos JC, Silva RD, et al. Diagnosis of coinfection by schistosomiasis and viral hepatitis B or C using 1H NMR-based metabonomics[J]. PLoS One, 2017, 12(8):e0182196.
doi: 10.1371/journal.pone.0182196 |
[26] |
Wang YL, Utzinger J, Xiao SH, et al. System level metabolic effects of a Schistosoma japonicum infection in the Syrian hamster[J]. Mol Biochem Parasitol, 2006, 146(1):1-9.
doi: 10.1016/j.molbiopara.2005.10.010 |
[27] |
Wu JF, Xu WX, Ming ZP, et al. Metabolic changes reveal the development of schistosomiasis in mice[J]. PLoS Negl Trop Dis, 2010, 4(8):e807.
doi: 10.1371/journal.pntd.0000807 |
[28] |
Huang YZ, Wu Q, Zhao L, et al. UHPLC-MS-based metabolomics analysis reveals the process of schistosomiasis in mice[J]. Front Microbiol, 2020, 11:1517.
doi: 10.3389/fmicb.2020.01517 |
[29] |
Wu JF, Holmes E, Xue J, et al. Metabolic alterations in the hamster co-infected with Schistosoma japonicum and Necator americanus[J]. Int J Parasitol, 2010, 40(6):695-703.
doi: 10.1016/j.ijpara.2009.11.003 |
[30] |
Zhu XY, Chen L, Wu JF, et al. Salmonella typhimurium infection reduces Schistosoma japonicum worm burden in mice[J]. Sci Rep, 2017, 7(1):1349.
doi: 10.1038/s41598-017-00992-1 |
[31] |
Hu Y, Sun L, Yuan ZY, et al. High throughput data analyses of the immune characteristics of Microtus fortis infected with Schistosoma japonicum[J]. Sci Rep, 2017, 7(1):11311.
doi: 10.1038/s41598-017-11532-2 pmid: 28900150 |
[32] |
Liu R, Cheng WJ, Tang HB, et al. Comparative metabonomic investigations of Schistosoma japonicum from SCID mice and BALB/c mice: clues to developmental abnormality of schistosome in the immunodeficient host[J]. Front Microbiol, 2019, 10:440.
doi: 10.3389/fmicb.2019.00440 |
[33] |
Zhang XL, Hu XY, Chen R, et al. Perturbations of metabolomic profiling of spleen from rats infected with Clonorchis sinensis determined by LC-MS/MS method[J]. Front Mol Biosci, 2020, 7:561641.
doi: 10.3389/fmolb.2020.561641 |
[34] |
Saric J, Li JV, Utzinger J, et al. Systems parasitology: effects of Fasciola hepatica on the neurochemical profile in the rat brain[J]. Mol Syst Biol, 2010, 6:396.
doi: 10.1038/msb.2010.49 |
[35] |
Kokova DA, Kostidis S, Morello J, et al. Exploratory metabolomics study of the experimental opisthorchiasis in a laboratory animal model (golden hamster, Mesocricetus auratus)[J]. PLoS Negl Trop Dis, 2017, 11(10):e0006044.
doi: 10.1371/journal.pntd.0006044 |
[36] |
Hosch W, Junghanss T, Stojkovic M, et al. Metabolic viability assessment of cystic echinococcosis using high-field 1H MRS of cyst contents[J]. NMR Biomed, 2008, 21(7):734-754.
doi: 10.1002/nbm.v21:7 |
[37] |
Lin C, Chen Z, Zhang L, et al. Deciphering the metabolic perturbation in hepatic alveolar echinococcosis: a 1H NMRbased metabolomics study[J]. Parasit Vectors, 2019, 12(1):300.
doi: 10.1186/s13071-019-3554-0 |
[38] |
Vasta JD, Fried B, Sherma J. High performance thin layer chromatographic analysis of neutral lipids in the urine of BALB/c mice infected with Echinostoma caproni[J]. Parasitol Res, 2008, 102(4):625-629.
doi: 10.1007/s00436-007-0798-y |
[39] |
Saric J, Li JV, Wang YL, et al. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery[J]. PLoS Negl Trop Dis, 2008, 2(7):e254.
doi: 10.1371/journal.pntd.0000254 |
[40] |
Saric J, Li JV, Wang YL, et al. Panorganismal metabolic response modeling of an experimental Echinostoma caproni infection in the mouse[J]. J Proteome Res, 2009, 8(8):3899-3911.
doi: 10.1021/pr900185s |
[41] |
Wang YL, Xiao SH, Xue J, et al. Systems metabolic effects of a Necator americanus infection in Syrian hamster[J]. J Proteome Res, 2009, 8(12):5442-5450.
doi: 10.1021/pr900711j |
[42] |
Houlden A, Hayes KS, Bancroft AJ, et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: effects reversed by pathogen clearance[J]. PLoS One, 2015, 10(5):e0125945.
doi: 10.1371/journal.pone.0125945 |
[43] |
Melo CF, Esteves CZ, de Oliveira RN, et al. Early developmental stages of Ascaris lumbricoides featured by high-resolution mass spectrometry[J]. Parasitol Res, 2016, 115(11):4107-4114.
doi: 10.1007/s00436-016-5183-2 |
[44] |
Zheng WB, Zou Y, Elsheikha HM, et al. Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara canis[J]. Parasit Vectors, 2019, 12(1):447.
doi: 10.1186/s13071-019-3703-5 |
[45] |
Martin FP, Verdu EF, Wang YL, et al. Transgenomic metabolic interactions in a mouse disease model: interactions of Trichinella spiralis infection with dietary Lactobacillus paracasei supplementation[J]. J Proteome Res, 2006, 5(9):2185-2193.
doi: 10.1021/pr060157b |
[46] |
Globisch D, Eubanks LM, Shirey RJ, et al. Validation of onchocerciasis biomarker N-acetyltyramine-O-glucuronide (NATOG)[J]. Bioorg Med Chem Lett, 2017, 27(15):3436-3440.
doi: S0960-894X(17)30581-4 pmid: 28600214 |
[47] |
Crusco A, Whiteland H, Baptista R, et al. Antischistosomal properties of sclareol and its heck-coupled derivatives: design, synjournal, biological evaluation, and untargeted metabolomics[J]. ACS Infect Dis, 2019, 5(7):1188-1199.
doi: 10.1021/acsinfecdis.9b00034 |
[48] |
Wangchuk P, Kouremenos K, Eichenberger RM, et al. Metabolomic profiling of the excretory-secretory products of hookworm and whipworm[J]. Metabolomics, 2019, 15(7):101.
doi: 10.1007/s11306-019-1561-y pmid: 31254203 |
[49] | Wangchuk P, Shepherd C, Constantinoiu C, et al. Hookworm-derived metabolites suppress pathology in a mouse model of colitis and inhibit secretion of key inflammatory cytokines in primary human leukocytes[J]. Infect Immun, 2019, 87(4):e00851-e00818. |
[50] |
Wangchuk P, Lavers O, Wishart DS, et al. Excretory/secretory metabolome of the zoonotic roundworm parasite Toxocara canis[J]. Biomolecules, 2020, 10(8):1157.
doi: 10.3390/biom10081157 |
[51] |
Zhu W, Baggerman G, Secor WE, et al. Dracunculus medinensis and Schistosoma mansoni contain opiate alkaloids[J]. Ann Trop Med Parasitol, 2002, 96(3):309-316.
doi: 10.1179/000349802125000808 |
[52] |
Robijn ML, Koeleman CA, Hokke CH, et al. Schistosoma mansoni eggs excrete specific free oligosaccharides that are detectable in the urine of the human host[J]. Mol Biochem Parasitol, 2007, 151(2):162-172.
doi: 10.1016/j.molbiopara.2006.10.018 |
[1] | 谭潇, 朱琪, 刘众齐, 李佳, 彭丁晋. 日本血吸虫Sj26gst mRNA候选疫苗的免疫原性研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 546-551. |
[2] | 刘华熳, Bikash Giri, 方传涛, 郑亚萌, 吴慧欣, 曾敏浩, 李姗, 程国锋. 日本血吸虫m6A修饰的性别相关circRNA鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 552-558. |
[3] | 逯君霞, 许军英, 赵彬, 王芊文, 李文华, 耿玉庆, 侯隽, 吴向未, 陈雪玲. 细粒棘球蚴感染诱导巨噬细胞表达CD73和A2AR抑制炎症反应[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 559-566. |
[4] | 李晓芹, 赖雅诗, 陈豫, 吕嘉慧, 韦帅, 张立林, 何姗姗, 石云良, 李艳文. 华支睾吸虫囊蚴脱囊的超微结构观察[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 601-608. |
[5] | 黄梦宇, 陈帝坤, 陈慧儒, 范梦培, 柳俊有, 权云帆. 海口市湿地公园褐云玛瑙螺广州管圆线虫感染情况调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 640-643. |
[6] | 张丽, 缪峰, 申艳梅. 肝毛细线虫感染1例[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 650-652. |
[7] | 覃裴溪, 周彩显, 鲁志刚, 张碧瀛, 周涛勋, 胡敏. 粪类圆线虫感染性Ⅲ期幼虫和寄生性雌虫miRNA的鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 412-420. |
[8] | 徐银, 刘婷, 徐慧, 曾小军, 兰炜明, 龚志红, 戴坤教, 邱婷婷, 郝先, 谢曙英. PCR-CRISPR/Cas12a华支睾吸虫囊蚴检测方法的建立和应用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 421-426. |
[9] | 蔡长煌, 张芝平, 卓鸣莺, 郭理平, 傅志辉, 刘亦若. 基于虫卵内转录间隔区2序列分析诊断麝猫后睾吸虫和华支睾吸虫感染[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 427-433. |
[10] | 曹得萍, 李嘉静, 宋梦微, 莫刚. 多房棘球蚴组织蛋白体外刺激肝星状细胞变化的实验观察[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 440-445. |
[11] | 张娟, 陶洪, 李彦忠, 王婷婷, 杨晶晶, 向以斌, 陈奕杉, 周晓梅. 2017—2022年云南省常见螺类广州管圆线虫感染情况调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 464-469. |
[12] | 陈瑶, 张本光. 异尖属线虫分类学研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 480-485. |
[13] | 张旭, 孙希萌. 旋毛虫感染免疫逃逸机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 492-496. |
[14] | 叶井明, 何威, 刘慧媛, 鱼潇, 罗波, 刘美辰, 周必英. 猪囊尾蚴排泄分泌抗原TPx对仔猪树突状细胞活化的影响[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 286-293. |
[15] | 吴晓莹, 胡媛, 曹建平. 细粒棘球绦虫多肽-壳聚糖季铵盐纳米颗粒的制备[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 300-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||