[1] | Bethony J, Brooker S, Albonico M, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm[J]. Lancet, 2006, 367(9521):1521-1532. | [2] | Keiser J, Utzinger J. Emerging foodborne trematodiasis[J]. Emerg Infect Dis, 2005, 11(10):1507-1514. | [3] | Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189. | [4] | Fiehn O, Kopka J, Dörmann P, et al. Metabolite profiling for plant functional genomics[J]. Nat Biotechnol, 2000, 18(11):1157-1161. | [5] | Taylor J, King RD, Altmann T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics, 2002, 18(Suppl 2):S241-S248. | [6] | Qian G, Wang YL. Serum metabolomics of early postoperative cognitive dysfunction in elderly patients using liquid chromatography and Q-TOF mass spectrometry[J]. Oxid Med Cell Longev, 2020, 2020:8957541. | [7] | Prosser GA, de Carvalho LP. Metabolomics reveal d-alanine: D-alanine ligase as the target of d-cycloserine in Mycobacterium tuberculosis[J]. ACS Med Chem Lett, 2013, 4(12):1233-1237. | [8] | Ganguly S, Mitra T, Mahanty A, et al. A comparative metabolomics study on anadromous clupeid Tenualosa ilisha for better understanding the influence of habitat on nutritional composition[J]. Metabolomics, 2020, 16(3):30. | [9] | Yang CX, Zhao WN, Wang YN, et al. Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi[J]. Microorganisms, 2020, 8(3):E327. | [10] | Kokova D, Mayboroda OA. Twenty years on: metabolomics in helminth research[J]. Trends Parasitol, 2019, 35(4):282-288. | [11] | O′Sullivan WJ, Edwards MR, Norton RS. The application of nuclear magnetic resonance spectroscopy to parasite metabolism[J]. Parasitol Today, 1989, 5(3):79-82. | [12] | Kamleh MA, Dow JA, Watson DG. Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems[J]. Brief Funct Genomic Proteomic, 2009, 8(1):28-48. | [13] | Na J, Khan A, Kim JK, et al. Discovery of metabolic alterations in the serum of patients infected with Plasmodium spp. by high-resolution metabolomics[J]. Metabolomics, 2019, 16(1):9. | [14] | Hargrave KE, Woods S, Millington O, et al. Multi-omics studies demonstrate Toxoplasma gondii-induced metabolic reprogramming of murine dendritic cells[J]. Front Cell Infect Microbiol, 2019, 9:309. | [15] | Johnston K, Kim DH, Kerkhoven EJ, et al. Mapping the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U- 13C-labelled substrates and LC-MS[J]. Biosci Rep, 2019, 39(5): BSR20181601. | [16] | Arjmand M, Madrakian A, Khalili G, et al. Metabolomics-based study of logarithmic and stationary phases of promastigotes in Leishmania major by 1H NMR spectroscopy[J]. Iran Biomed J, 2016, 20(2):77-83. | [17] | Massa DR, Chejlava MJ, Fried B, et al. High performance column liquid chromatographic analysis of selected carboxylic acids in Biomphalaria glabrata patently infected with Schistosoma mansoni[J]. Parasitol Res, 2007, 101(4):925-928. | [18] | Abou Elseoud SM, Abdel Fattah NS, Ezz El Din HM, et al. Potential correlation between carboxylic acid metabolites in Biomphalaria alexandrina snails after exposure to Schistosoma mansoni infection[J]. Korean J Parasitol, 2012, 50(2):119-126. | [19] | Tunholi-Alves VM, Tunholi VM, Garcia J, et al. Unveiling the oxidative metabolism of Achatina fulica (Mollusca ∶ Gastropoda) experimentally infected to Angiostrongylus cantonensis (Nematoda ∶ Metastrongylidae)[J]. Parasitol Res, 2018, 117(6):1773-1781. | [20] | Wang YL, Holmes E, Nicholson JK, et al. Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification[J]. Proc Natl Acad Sci USA, 2004, 101(34):12676-12681. | [21] | Li JV, Holmes E, Saric J, et al. Metabolic profiling of a Schistosoma mansoni infection in mouse tissues using magic angle spinning-nuclear magnetic resonance spectroscopy[J]. Int J Parasitol, 2009, 39(5):547-558. | [22] | Garcia-Perez I, Angulo S, Utzinger J, et al. Chemometric and biological validation of a capillary electrophoresis metabolomic experiment of Schistosoma mansoni infection in mice[J]. Electrophoresis, 2010, 31(14):2338-2348. | [23] | Garcia-Perez I, Couto Alves A, Angulo S, et al. Bidirectional correlation of NMR and capillary electrophoresis fingerprints: a new approach to investigating Schistosoma mansoni infection in a mouse model[J]. Anal Chem, 2010, 82(1):203-210. | [24] | Balog CI, Meissner A, Göraler S, et al. Metabonomic investigation of human Schistosoma mansoni infection[J]. Mol Biosyst, 2011, 7(5):1473-1480. | [25] | Gouveia LR, Santos JC, Silva RD, et al. Diagnosis of coinfection by schistosomiasis and viral hepatitis B or C using 1H NMR-based metabonomics[J]. PLoS One, 2017, 12(8):e0182196. | [26] | Wang YL, Utzinger J, Xiao SH, et al. System level metabolic effects of a Schistosoma japonicum infection in the Syrian hamster[J]. Mol Biochem Parasitol, 2006, 146(1):1-9. | [27] | Wu JF, Xu WX, Ming ZP, et al. Metabolic changes reveal the development of schistosomiasis in mice[J]. PLoS Negl Trop Dis, 2010, 4(8):e807. | [28] | Huang YZ, Wu Q, Zhao L, et al. UHPLC-MS-based metabolomics analysis reveals the process of schistosomiasis in mice[J]. Front Microbiol, 2020, 11:1517. | [29] | Wu JF, Holmes E, Xue J, et al. Metabolic alterations in the hamster co-infected with Schistosoma japonicum and Necator americanus[J]. Int J Parasitol, 2010, 40(6):695-703. | [30] | Zhu XY, Chen L, Wu JF, et al. Salmonella typhimurium infection reduces Schistosoma japonicum worm burden in mice[J]. Sci Rep, 2017, 7(1):1349. | [31] | Hu Y, Sun L, Yuan ZY, et al. High throughput data analyses of the immune characteristics of Microtus fortis infected with Schistosoma japonicum[J]. Sci Rep, 2017, 7(1):11311. | [32] | Liu R, Cheng WJ, Tang HB, et al. Comparative metabonomic investigations of Schistosoma japonicum from SCID mice and BALB/c mice: clues to developmental abnormality of schistosome in the immunodeficient host[J]. Front Microbiol, 2019, 10:440. | [33] | Zhang XL, Hu XY, Chen R, et al. Perturbations of metabolomic profiling of spleen from rats infected with Clonorchis sinensis determined by LC-MS/MS method[J]. Front Mol Biosci, 2020, 7:561641. | [34] | Saric J, Li JV, Utzinger J, et al. Systems parasitology: effects of Fasciola hepatica on the neurochemical profile in the rat brain[J]. Mol Syst Biol, 2010, 6:396. | [35] | Kokova DA, Kostidis S, Morello J, et al. Exploratory metabolomics study of the experimental opisthorchiasis in a laboratory animal model (golden hamster, Mesocricetus auratus)[J]. PLoS Negl Trop Dis, 2017, 11(10):e0006044. | [36] | Hosch W, Junghanss T, Stojkovic M, et al. Metabolic viability assessment of cystic echinococcosis using high-field 1H MRS of cyst contents[J]. NMR Biomed, 2008, 21(7):734-754. | [37] | Lin C, Chen Z, Zhang L, et al. Deciphering the metabolic perturbation in hepatic alveolar echinococcosis: a 1H NMRbased metabolomics study[J]. Parasit Vectors, 2019, 12(1):300. | [38] | Vasta JD, Fried B, Sherma J. High performance thin layer chromatographic analysis of neutral lipids in the urine of BALB/c mice infected with Echinostoma caproni[J]. Parasitol Res, 2008, 102(4):625-629. | [39] | Saric J, Li JV, Wang YL, et al. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery[J]. PLoS Negl Trop Dis, 2008, 2(7):e254. | [40] | Saric J, Li JV, Wang YL, et al. Panorganismal metabolic response modeling of an experimental Echinostoma caproni infection in the mouse[J]. J Proteome Res, 2009, 8(8):3899-3911. | [41] | Wang YL, Xiao SH, Xue J, et al. Systems metabolic effects of a Necator americanus infection in Syrian hamster[J]. J Proteome Res, 2009, 8(12):5442-5450. | [42] | Houlden A, Hayes KS, Bancroft AJ, et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: effects reversed by pathogen clearance[J]. PLoS One, 2015, 10(5):e0125945. | [43] | Melo CF, Esteves CZ, de Oliveira RN, et al. Early developmental stages of Ascaris lumbricoides featured by high-resolution mass spectrometry[J]. Parasitol Res, 2016, 115(11):4107-4114. | [44] | Zheng WB, Zou Y, Elsheikha HM, et al. Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara canis[J]. Parasit Vectors, 2019, 12(1):447. | [45] | Martin FP, Verdu EF, Wang YL, et al. Transgenomic metabolic interactions in a mouse disease model: interactions of Trichinella spiralis infection with dietary Lactobacillus paracasei supplementation[J]. J Proteome Res, 2006, 5(9):2185-2193. | [46] | Globisch D, Eubanks LM, Shirey RJ, et al. Validation of onchocerciasis biomarker N-acetyltyramine-O-glucuronide (NATOG)[J]. Bioorg Med Chem Lett, 2017, 27(15):3436-3440. | [47] | Crusco A, Whiteland H, Baptista R, et al. Antischistosomal properties of sclareol and its heck-coupled derivatives: design, synjournal, biological evaluation, and untargeted metabolomics[J]. ACS Infect Dis, 2019, 5(7):1188-1199. | [48] | Wangchuk P, Kouremenos K, Eichenberger RM, et al. Metabolomic profiling of the excretory-secretory products of hookworm and whipworm[J]. Metabolomics, 2019, 15(7):101. | [49] | Wangchuk P, Shepherd C, Constantinoiu C, et al. Hookworm-derived metabolites suppress pathology in a mouse model of colitis and inhibit secretion of key inflammatory cytokines in primary human leukocytes[J]. Infect Immun, 2019, 87(4):e00851-e00818. | [50] | Wangchuk P, Lavers O, Wishart DS, et al. Excretory/secretory metabolome of the zoonotic roundworm parasite Toxocara canis[J]. Biomolecules, 2020, 10(8):1157. | [51] | Zhu W, Baggerman G, Secor WE, et al. Dracunculus medinensis and Schistosoma mansoni contain opiate alkaloids[J]. Ann Trop Med Parasitol, 2002, 96(3):309-316. | [52] | Robijn ML, Koeleman CA, Hokke CH, et al. Schistosoma mansoni eggs excrete specific free oligosaccharides that are detectable in the urine of the human host[J]. Mol Biochem Parasitol, 2007, 151(2):162-172. |
|