中国寄生虫学与寄生虫病杂志 ›› 2024, Vol. 42 ›› Issue (5): 653-658.doi: 10.12140/j.issn.1000-7423.2024.05.014
收稿日期:
2024-05-21
修回日期:
2024-07-25
出版日期:
2024-10-30
发布日期:
2024-10-22
通讯作者:
* 郑斌(1987—),男,博士,副研究员,从事病原体与宿主相互作用的分子机制研究。E-mail:bin_zheng@foxmail.com作者简介:
李仕毓(2000—),女,硕士研究生,从事弓形虫分泌蛋白功能研究。E-mail:lishiyu081@163.com
基金资助:
LI Shiyu(), LI Jing, LU Shaohong, ZHENG Bin*(
)
Received:
2024-05-21
Revised:
2024-07-25
Online:
2024-10-30
Published:
2024-10-22
Contact:
* E-mail: Supported by:
摘要:
刚地弓形虫是人类和动物最常见的感染性病原体之一,可引起人兽共患弓形虫病。该病可对人类健康和畜牧业生产造成严重危害。细胞自主免疫是单个细胞内部发生的固有免疫应答,旨在限制入侵细胞内的病原体(如细菌、病毒、寄生虫等)的复制与传播。弓形虫感染宿主细胞后,细胞自主免疫主要由干扰素诱导的吲哚胺2,3-二氧化酶、诱导型一氧化氮合酶、三磷酸鸟苷酶家族、自噬相关蛋白和泛素化产物进行调控,在宿主细胞抗弓形虫过程中发挥重要作用。本文对宿主细胞自主免疫抗弓形虫的研究进展进行综述,以期为弓形虫病的预防和治疗提供新的方向。
中图分类号:
李仕毓, 李静, 陆绍红, 郑斌. 宿主细胞自主免疫抗弓形虫的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(5): 653-658.
LI Shiyu, LI Jing, LU Shaohong, ZHENG Bin. Research advances on host cell-autonomous immunity against Toxoplasma gondii[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2024, 42(5): 653-658.
[1] | Zhao XY, Ewald SE. The molecular biology and immune control of chronic Toxoplasma gondii infection[J]. J Clin Invest, 2020, 130(7): 3370-3380. |
[2] | Loh FK, Nathan S, Chow SC, et al. Vaccination challenges and strategies against long-lived Toxoplasma gondii[J]. Vaccine, 2019, 37(30): 3989-4000. |
[3] | Wei F, Wang W, Liu Q. Protein kinases of Toxoplasma gondii: functions and drug targets[J]. Parasitol Res, 2013, 112(6): 2121-2129. |
[4] | Costa Mendonça-Natividade F, Duque Lopes C, Ricci-Azevedo R, et al. Receptor heterodimerization and co-receptor engagement in TLR2 activation induced by MIC1 and MIC4 from Toxoplasma gondii[J]. Int J Mol Sci, 2019, 20(20): 5001. |
[5] | Nyonda MA, Hammoudi PM, Ye S, et al. Toxoplasma gondii GRA60 is an effector protein that modulates host cell autonomous immunity and contributes to virulence[J]. Cell Microbiol, 2021, 23(2): e13278. |
[6] | Rastogi S, Xue Y, Quake SR, et al. Differential impacts on host transcription by ROP and GRA effectors from the intracellular parasite Toxoplasma gondii[J]. mBio, 2020, 11(3): e00182. |
[7] |
Sasai M, Yamamoto M. Innate, adaptive, and cell-autonomous immunity against Toxoplasma gondii infection[J]. Exp Mol Med, 2019, 51(12): 1-10.
doi: 10.1038/s12276-019-0353-9 pmid: 31827072 |
[8] | Ihara F, Yamamoto M. The role of IFN-γ-mediated host immune responses in monitoring and the elimination of Toxoplasma gondii infection[J]. Int Immunol, 2024, 36(5): 199-210. |
[9] | Du KG, Zhuo XH, Lu SH. Research advances on the innate immunity mechanisms against Toxoplasma gondii[J]. Chin J Parasitol Parasit Dis, 2020, 38(6): 764-770. (in Chinese) |
(杜凯歌, 卓洵辉, 陆绍红. 抗弓形虫固有免疫机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(6): 764-770.)
doi: 10.12140/j.issn.1000-7423.2020.06.015 |
|
[10] | Bonilla FA, Oettgen HC. Adaptive immunity[J]. J Allergy Clin Immunol, 2010, 125(2 suppl 2): S33-S40. |
[11] | Gazzinelli RT, Hieny S, Wynn TA, et al. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts[J]. Proc Natl Acad Sci U S A, 1993, 90(13): 6115-6119. |
[12] |
Randow F, MacMicking JD, James LC. Cellular self-defense: how cell-autonomous immunity protects against pathogens[J]. Science, 2013, 340(6133): 701-706.
doi: 10.1126/science.1233028 pmid: 23661752 |
[13] | Chen MX, Sun H, Boot M, et al. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella[J]. Science, 2020, 369(6502): 450-455. |
[14] | MacMicking JD. Cell-autonomous effector mechanisms against mycobacterium tuberculosis[J]. Cold Spring Harb Perspect Med, 2014, 4(10): a018507. |
[15] |
Towers GJ, Noursadeghi M. Interactions between HIV-1 and the cell-autonomous innate immune system[J]. Cell Host Microbe, 2014, 16(1): 10-18.
doi: 10.1016/j.chom.2014.06.009 pmid: 25011104 |
[16] | Kousathanas A, Pairo-Castineira E, Rawlik K, et al. Whole-genome sequencing reveals host factors underlying critical COVID-19[J]. Nature, 2022, 607(7917): 97-103. |
[17] | Pairo-Castineira E, Rawlik K, Bretherick AD, et al. GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19[J]. Nature, 2023, 617(7962): 764-768. |
[18] | Hou YH, Lv FL. The interplay between Toxoplasma gondii infection and autophagy in host cells[J]. Chin J Parasitol Parasit Dis, 2021, 39(4): 537-541, 547. (in Chinese) |
(侯永恒, 吕芳丽. 弓形虫感染与宿主细胞自噬的相互作用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 537-541, 547.)
doi: 10.12140/j.issn.1000-7423.2021.04.019 |
|
[19] | Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors[J]. Nat Rev Microbiol, 2012, 10(11): 766-778. |
[20] |
Fujigaki S, Takemura M, Hamakawa H, et al. The mechanism of interferon-gamma induced anti Toxoplasma gondii by indoleamine 2,3-dioxygenase and/or inducible nitric oxide synthase vary among tissues[J]. Adv Exp Med Biol, 2003, 527: 97-103.
pmid: 15206721 |
[21] | Bando H, Lee Y, Sakaguchi N, et al. Inducible nitric oxide synthase is a key host factor for Toxoplasma GRA15-dependent disruption of the gamma interferon-induced antiparasitic human response[J]. mBio, 2018, 9(5): e01738-e01718. |
[22] | Zhao YL, Ferguson DJP, Wilson DC, et al. Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages[J]. J Immunol, 2009, 182(6): 3775-3781. |
[23] | Zhao XY, Lempke SL, Urbán Arroyo JC, et al. iNOS is necessary for GBP-mediated T. gondii clearance in murine macrophages via vacuole nitration and intravacuolar network collapse[J]. Nat Commun, 2024, 15(1): 2698. |
[24] |
Murray HW, Teitelbaum RF. L-arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes[J]. J Infect Dis, 1992, 165(3): 513-517.
pmid: 1538156 |
[25] |
Oberdörfer C, Adams O, MacKenzie CR, et al. Role of IDO activation in anti-microbial defense in human native astrocytes[J]. Adv Exp Med Biol, 2003, 527: 15-26.
pmid: 15206712 |
[26] |
Rozenfeld C, Martinez R, Seabra S, et al. Toxoplasma gondii prevents neuron degeneration by interferon-gamma-activated microglia in a mechanism involving inhibition of inducible nitric oxide synthase and transforming growth factor-beta1 production by infected microglia[J]. Am J Pathol, 2005, 167(4): 1021-1031.
doi: 10.1016/s0002-9440(10)61191-1 pmid: 16192637 |
[27] | Dockterman J, Coers J. How did we get here? Insights into mechanisms of immunity-related GTPase targeting to intracellular pathogens[J]. Curr Opin Microbiol, 2022, 69: 102189. |
[28] |
Martens S, Howard J. The interferon-inducible GTPases[J]. Annu Rev Cell Dev Biol, 2006, 22: 559-589.
pmid: 16824009 |
[29] | Saeij JP, Frickel EM. Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death[J]. Curr Opin Microbiol, 2017, 40: 72-80. |
[30] |
Ohshima J, Lee Y, Sasai MW, et al. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii[J]. J Immunol, 2014, 192(7): 3328-3335.
doi: 10.4049/jimmunol.1302822 pmid: 24563254 |
[31] |
Bekpen C, Hunn JP, Rohde C, et al. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage[J]. Genome Biol, 2005, 6(11): R92.
doi: 10.1186/gb-2005-6-11-r92 pmid: 16277747 |
[32] | Khaminets A, Hunn JP, Könen-Waisman S, et al. Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole[J]. Cell Microbiol, 2010, 12(7): 939-961. |
[33] | Yamamoto M, Okuyama M, Ma JS, et al. A cluster of interferon-γ-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii[J]. Immunity, 2012, 37(2): 302-313. |
[34] | Zhao YO, Könen-Waisman S, Taylor GA, et al. Localisation and mislocalisation of the interferon-inducible immunity-related GTPase, Irgm1 (LRG-47) in mouse cells[J]. PLoS One, 2010, 5(1): e8648. |
[35] | Haldar AK, Saka HA, Piro AS, et al. IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of “self” IRGM proteins[J]. PLoS Pathog, 2013, 9(6): e1003414. |
[36] |
Maric-Biresev J, Hunn JP, Krut O, et al. Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection[J]. BMC Biol, 2016, 14: 33.
doi: 10.1186/s12915-016-0255-4 pmid: 27098192 |
[37] | Pradipta A, Sasai MW, Motani K, et al. Cell-autonomous Toxoplasma killing program requires Irgm2 but not its microbe vacuolar localization[J]. Life Sci Alliance, 2021, 4(7): e202000960. |
[38] | Zhao YO, Khaminets A, Hunn JP, et al. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death[J]. PLoS Pathog, 2009, 5(2): e1000288. |
[39] | Hunn JP, Koenen-Waisman S, Papic N, et al. Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii[J]. EMBO J, 2008, 27(19): 2495-2509. |
[40] |
Martens S, Parvanova I, Zerrahn J, et al. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases[J]. PLoS Pathog, 2005, 1(3): e24.
doi: 10.1371/journal.ppat.0010024 pmid: 16304607 |
[41] |
Müller UB, Howard JC. The impact of Toxoplasma gondii on the mammalian genome[J]. Curr Opin Microbiol, 2016, 32: 19-25.
doi: S1369-5274(16)30044-3 pmid: 27128504 |
[42] |
MacMicking JD. Interferon-inducible effector mechanisms in cell-autonomous immunity[J]. Nat Rev Immunol, 2012, 12(5): 367-382.
doi: 10.1038/nri3210 pmid: 22531325 |
[43] | Kim BH, Shenoy AR, Kumar P, et al. IFN-inducible GTPases in host cell defense[J]. Cell Host Microbe, 2012, 12(4): 432-444. |
[44] |
Pilla-Moffett D, Barber MF, Taylor GA, et al. Interferon-inducible GTPases in host resistance, inflammation and disease[J]. J Mol Biol, 2016, 428(17): 3495-3513.
doi: 10.1016/j.jmb.2016.04.032 pmid: 27181197 |
[45] |
MacMicking JD. IFN-inducible GTPases and immunity to intracellular pathogens[J]. Trends Immunol, 2004, 25(11): 601-609.
doi: 10.1016/j.it.2004.08.010 pmid: 15489189 |
[46] | Kim BH, Shenoy AR, Kumar P, et al. A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection[J]. Science, 2011, 332(6030): 717-721. |
[47] | Britzen-Laurent N, Bauer M, Berton V, et al. Intracellular trafficking of guanylate-binding proteins is regulated by heterodimerization in a hierarchical manner[J]. PLoS One, 2010, 5(12): e14246. |
[48] |
Modiano N, Lu YE, Cresswell P. Golgi targeting of human guanylate-binding protein-1 requires nucleotide binding, isoprenylation, and an IFN-gamma-inducible cofactor[J]. Proc Natl Acad Sci USA, 2005, 102(24): 8680-8685.
doi: 10.1073/pnas.0503227102 pmid: 15937107 |
[49] | Fisch D, Bando H, Clough B, et al. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis[J]. EMBO J, 2019, 38(13): e100926. |
[50] | Qin AP, Lai DH, Liu QF, et al. Guanylate-binding protein 1 (GBP1) contributes to the immunity of human mesenchymal stromal cells against Toxoplasma gondii[J]. Proc Natl Acad Sci U S A, 2017, 114(6): 1365-1370. |
[51] | Fisch D, Pfleiderer MM, Anastasakou E, et al. PIM1 controls GBP1 activity to limit self-damage and to guard against pathogen infection[J]. Science, 2023, 382(6666): eadg2253. |
[52] | Selleck EM, Fentress SJ, Beatty WL, et al. Guanylate-binding protein 1 (Gbp1) contributes to cell-autonomous immunity against Toxoplasma gondii[J]. PLoS Pathog, 2013, 9(4): e1003320. |
[53] | Sun HY, Yu D, Kong FL, et al. Regulatory effect of ubiquitin-proteasome system in growth and development of parasitic Protozoa and analysis of potential drug targets[J]. J Jilin Med Univ, 2024, 45(4): 286-290, 295. (in Chinese) |
(孙宏宇, 于丹, 孔繁利, 等. 泛素-蛋白酶体系统在寄生原虫生长发育中的调控作用及潜在药物靶点分析[J]. 吉林医药学院学报, 2024, 45(4): 286-290, 295.) | |
[54] | Clough B, Fisch D, Mize TH, et al. p97/VCP targets Toxoplasma gondii vacuoles for parasite restriction in interferon-stimulated human cells[J]. mSphere, 2023, 8(6): e0051123. |
[55] | Haldar AK, Foltz C, Finethy R, et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins[J]. Proc Natl Acad Sci USA, 2015, 112(41): E5628-E5637. |
[56] | Lee Y, Sasai MW, Ma JS, et al. p62 plays a specific role in interferon-γ-induced presentation of a Toxoplasma vacuolar antigen[J]. Cell Rep, 2015, 13(2): 223-233. |
[57] | Lee Y, Yamada H, Pradipta A, et al. Initial phospholipid-dependent Irgb6 targeting to Toxoplasma gondii vacuoles mediates host defense[J]. Life Sci Alliance, 2020, 3(1): e201900549. |
[58] | Wang YF, Hollingsworth LR, Sangaré LO, et al. Host E3 ubiquitin ligase ITCH mediates Toxoplasma gondii effector GRA35-triggered NLRP1 inflammasome activation and cell-autonomous immunity[J]. mBio, 2024, 15(3): e0330223. |
[59] | Mukhopadhyay D, Sangaré LO, Braun L,et al. Toxoplasma GRA15 limits parasite growth in IFNγ-activated fibroblasts through TRAF ubiquitin ligases[J]. EMBO J, 2020, 39(10): e103758. |
[60] |
Saeij JP, Boyle JP, Coller S, et al. Polymorphic secreted kinases are key virulence factors in toxoplasmosis[J]. Science, 2006, 314(5806): 1780-1783.
doi: 10.1126/science.1133690 pmid: 17170306 |
[61] |
Taylor S, Barragan A, Su C, et al. A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii[J]. Science, 2006, 314(5806): 1776-1780.
doi: 10.1126/science.1133643 pmid: 17170305 |
[62] | Clough B, Wright JD, Pereira PM, et al. K63-Linked ubiquitination targets Toxoplasma gondii for Endo-lysosomal destruction in IFNγ-stimulated human cells[J]. PLoS Pathog, 2016, 12(11): e1006027. |
[63] |
Dittmar G, Winklhofer KF. Linear ubiquitin chains: cellular functions and strategies for detection and quantification[J]. Front Chem, 2019, 7: 915.
doi: 10.3389/fchem.2019.00915 pmid: 31998699 |
[64] | Hernandez D, Walsh S, Saavedra Sanchez L, et al. Interferon-inducible E3 ligase RNF213 facilitates host-protective linear and K63-linked ubiquitylation of Toxoplasma gondii parasitophorous vacuoles[J]. mBio, 2022, 13(5): e0188822. |
[65] | Krishnamurthy S, Konstantinou EK, Young LH, et al. The human immune response to Toxoplasma: autophagy versus cell death[J]. PLoS Pathog, 2017, 13(3): e1006176. |
[66] |
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation[J]. Annu Rev Cell Dev Biol, 2011, 27: 107-132.
doi: 10.1146/annurev-cellbio-092910-154005 pmid: 21801009 |
[67] | Choi J, Park S, Biering SB, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy[J]. Immunity, 2014, 40(6): 924-935. |
[68] | Wacker R, Eickel N, Schmuckli-Maurer J, et al. LC3-association with the parasitophorous vacuole membrane of Plasmodium berghei liver stages follows a noncanonical autophagy pathway[J]. Cell Microbiol, 2017, 19(10) |
[69] |
Zhao ZJ, Fux B, Goodwin M, et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens[J]. Cell Host Microbe, 2008, 4(5): 458-469.
doi: 10.1016/j.chom.2008.10.003 pmid: 18996346 |
[70] | Bhushan J, Radke JB, Perng YC, et al. ISG15 connects autophagy and IFN-γ-dependent control of Toxoplasma gondii infection in human cells[J]. mBio, 2020, 11(5): e00852-20. |
[71] | Wu MM, An R, Zhou N,et al. Toxoplasma gondii CDPK3 controls the intracellular proliferation of parasites in macrophages[J]. Front Immunol, 2022, 13: 905142. |
[72] |
Randow F, Münz C. Autophagy in the regulation of pathogen replication and adaptive immunity[J]. Trends Immunol, 2012, 33(10): 475-487.
doi: 10.1016/j.it.2012.06.003 pmid: 22796170 |
[73] |
Pillich H, Chakraborty T, Mraheil MA. Cell-autonomous responses in Listeria monocytogenes infection[J]. Future Microbiol, 2015, 10(4): 583-597.
doi: 10.2217/fmb.15.4 pmid: 25865195 |
[74] | Könen-Waisman S, Howard JC. Cell-autonomous immunity to Toxoplasma gondii in mouse and man[J]. Microbes Infect, 2007, 9(14/15): 1652-1661. |
[1] | 解晓曼, 孙航, 代莉莎, 朱文菊, 王利磊, 谢环环, 董宏杰, 张俊梅, 王琦, 周贝贝, 赵桂华, 徐超, 尹昆. 刚地弓形虫感染对小鼠脑组织转录本m6A甲基化修饰的影响[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 27-35. |
[2] | 郑广福, 刘现兵, 姜昱竹, 李新雨, 胡雪梅, 张海霞. 刚地弓形虫感染孕鼠胎盘组织中中性粒细胞和IL-17与不良妊娠结局的关系[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(1): 48-54. |
[3] | 薛羽珊, 林萍, 程训佳, 冯萌. 慢性弓形虫感染对宿主中枢神经系统的损伤及其作用机制[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 527-531. |
[4] | 姜文静, 孟雅莉, 赵利娜, 王春苗, 张晓磊. 刚地弓形虫棒状体蛋白18和膜表面抗原30复合核酸疫苗对小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 532-538. |
[5] | 赵紫琪, 吕芳丽. 蒿甲醚脂质体体外抑制刚地弓形虫增殖作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 446-451. |
[6] | 张驰, 陈嘉婷, 辛紫萱, 杨莉莉, 杨梓瀚, 彭鸿娟. 弓形虫慢性感染小鼠脑转录组分析及与抑郁相关的犬尿氨酸通路的验证[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 270-278. |
[7] | 杜鹃, 李佳, 吴迪, 余琦, 张玮, 白如念, 郭俊林, 刘庆斌, 雷琪莉, 谷传慧, 王萌, 赵浩军. 2022年北京市犬猫刚地弓形虫感染血清流行病学调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 389-392. |
[8] | 李佳铭, 王艺璇, 杨宁爱, 马慧慧, 兰敏, 刘春兰, 赵志军. 刚地弓形虫ROP16蛋白对MH-S细胞极化和凋亡的影响及其相关机制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 579-586. |
[9] | 邹伟浩, 吴蔚玲, 廖远鹏, 陈敏, 彭鸿娟. 刚地弓形虫抗缓殖子期抗原1单克隆抗体的制备与应用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 587-593. |
[10] | 代莉莎, 张丽新, 尹昆. 刚地弓形虫诱导宿主精神行为障碍的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 642-646. |
[11] | 王杰, 温红阳, 陈滢, 安然, 罗庆礼, 沈继龙, 都建. 刚地弓形虫巨噬细胞迁移抑制因子基因敲除虫株的构建与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 349-354. |
[12] | 王振勋, 熊思思, 孙夏慧, 王永亮, 潘格, 何深一, 丛华. 刚地弓形虫慢性感染小鼠脑组织中lncRNA102796的差异表达及其作用机制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 187-193. |
[13] | 蒋峰, 陈润, 都宁宁, 朱梦怡, 钟昊, 陈辉, 奚旭霞, 湛孝东, 李朝品. 芜湖市区宠物犬、猫刚地弓形虫感染情况调查[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 124-126. |
[14] | 鲁飞, 卓洵辉, 陆绍红. 顶复门原虫感染与宿主细胞自噬相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 826-831. |
[15] | 王龙江, 李瑾, 尹昆, 徐超, 刘功振, 黄炳成, 魏庆宽, 孙慧. 刚地弓形虫入侵人包皮成纤维细胞前后转录组差异分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 480-486. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||