中国寄生虫学与寄生虫病杂志 ›› 2022, Vol. 40 ›› Issue (5): 642-646.doi: 10.12140/j.issn.1000-7423.2022.05.012
收稿日期:
2022-01-19
修回日期:
2022-01-25
出版日期:
2022-10-30
发布日期:
2022-08-15
通讯作者:
尹昆
作者简介:
代莉莎(1995-),女,硕士研究生,从事弓形虫病研究。E-mail: 675172057@qq.com
基金资助:
DAI Li-sha(), ZHANG Li-xin, YIN Kun()
Received:
2022-01-19
Revised:
2022-01-25
Online:
2022-10-30
Published:
2022-08-15
Contact:
YIN Kun
Supported by:
摘要:
刚地弓形虫可引起人兽共患寄生虫病,弓形虫组织包囊引起的慢性感染可导致宿主神经系统功能异常,诱发宿主行为改变或精神障碍,如导致寄生动物宿主降低对捕食者的恐惧等,人类宿主的多种精神障碍也与慢性感染显著相关。目前已知介导该过程可能的机制,包括脑包囊感染、中枢神经递质失衡,以及表观遗传调控“行为操纵”等,但确切机制尚不明确。本文就刚地弓形虫感染导致宿主精神行为异常的相关研究,以及目前研究较为深入的发生机制研究进展进行综述。
中图分类号:
代莉莎, 张丽新, 尹昆. 刚地弓形虫诱导宿主精神行为障碍的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 642-646.
DAI Li-sha, ZHANG Li-xin, YIN Kun. Research advances in Toxoplasma gondii induced host mental-behavioural disorders[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(5): 642-646.
[1] |
Petersen E. Toxoplasmosis[J]. Semin Fetal Neonatal Med, 2007, 12(3): 214-223.
doi: 10.1016/j.siny.2007.01.011 |
[2] |
Tyebji S,, Seizova S,, Hannan AJ, et al. Toxoplasmosis: a pathway to neuropsychiatric disorders[J]. Neurosci Biobehav Rev, 2019, 96: 72-92.
doi: S0149-7634(18)30370-1 pmid: 30476506 |
[3] |
Hernandez AV,, Thota P,, Pellegrino D, et al. A systematic review and meta-analysis of the relative efficacy and safety of treatment regimens for HIV-associated cerebral toxoplasmosis: Is trimethoprim-sulfamethoxazole a real option?[J]. HIV Med, 2017, 18(2): 115-124.
doi: 10.1111/hiv.12402 pmid: 27353303 |
[4] |
Berdoy M,, Webster JP,, MacDonald DW. Fatal attraction in rats infected with Toxoplasma gondii[J]. Proc Biol Sci, 2000, 267(1452): 1591-1594.
doi: 10.1098/rspb.2000.1182 |
[5] | Shen SL,, Yao YY,, Liu M, et al. Abnormal mental behavior caused by toxoplasmosis and its mechanism[J]. J Pathog Biol, 2013, 8(11): 1047-1050. (in Chinese) |
( 申善良,, 姚云英,, 刘敏, 等. 弓形虫感染引起的情智行为异常及其发生机制[J]. 中国病原生物学杂志, 2013, 8(11): 1047-1050.) | |
[6] |
Vyas A,, Kim SK,, Giacomini N, et al. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors[J]. PNAS, 2007, 104(15): 6442-6447.
doi: 10.1073/pnas.0608310104 |
[7] |
Boillat M,, Hammoudi PM,, Dogga SK, et al. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii[J]. Cell Rep. 2020, 30(2): 320-334.e6.
doi: 10.1016/j.celrep.2019.12.019 |
[8] | Burkinshaw J,, Kirman BH,, Sorsby A. Toxoplasmosis in relation to mental deficiency[J]. Br Med J, 1953, 1(4812): 702-704. |
[9] | Wang T,, Tang ZH,, Zhao ZJ. Possible mechanisms of latent Toxoplasma gondii infection and their effect on human behavior[J]. J Pathog Biol, 2012, 7(2): 155-157. (in Chinese) |
( 汪涛,, 汤自豪,, 赵志军. 隐性弓形虫感染对人行为影响及可能机制概述[J]. 中国病原生物学杂志, 2012, 7(2): 155-157.) | |
[10] | Ouyang J,, Chen YK. Progress in research on the correlation between Toxoplasma gondii infection and schizophrenia[J]. Chin J Parasitol Parasit Dis, 2019, 37(1): 102-106. (in Chinese) |
( 欧阳净,, 陈耀凯. 弓形虫感染与精神分裂症相关性的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(1): 102-106.) | |
[11] |
Sutterland AL,, Fond G,, Kuin A, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis[J]. Acta Psychiatr Scand, 2015, 132(3): 161-179.
doi: 10.1111/acps.12423 |
[12] |
Torrey EF,, Bartko JJ,, Lun ZR, et al. Antibodies to Toxoplasma gondii in patients with schizophrenia: a meta-analysis[J]. Schizophr Bull, 2007, 33(3): 729-736.
doi: 10.1093/schbul/sbl050 |
[13] |
Torrey EF,, Bartko JJ,, Yolken RH. Toxoplasma gondii and other risk factors for schizophrenia: an update[J]. Schizophr Bull, 2012, 38(3): 642-647.
doi: 10.1093/schbul/sbs043 |
[14] |
Monroe JM,, Buckley PF,, Miller BJ. Meta-analysis of anti Toxoplasma gondii IgM antibodies in acute psychosis[J]. Schizophr Bull, 2015, 41(4): 989-998.
doi: 10.1093/schbul/sbu159 pmid: 25385789 |
[15] | Flegr J,, Horáček J. Negative effects of latent toxoplasmosis on mental health[J]. Front Psychiatry, 2020, 10: 1012. |
[16] |
Flegr J. How and why Toxoplasma makes us crazy[J]. Trends Parasitol, 2013, 29(4): 156-163.
doi: 10.1016/j.pt.2013.01.007 |
[17] |
Dalimi A,, Abdoli A. Latent Toxoplasmosis and human[J]. Iran J Parasitol, 2012, 7(1): 1-17.
pmid: 23133466 |
[18] |
Flegr J. Effects of toxoplasma on human behavior[J]. Schizophr Bull, 2007, 33(3): 757-760.
doi: 10.1093/schbul/sbl074 |
[19] |
Carruthers VB,, Suzuki Y. Effects of Toxoplasma gondii infection on the brain[J]. Schizophr Bull, 2007, 33(3): 745-751.
doi: 10.1093/schbul/sbm008 pmid: 17322557 |
[20] |
Konradt C,, Ueno N,, Christian DA, et al. Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system[J]. Nat Microbiol, 2016, 1: 16001.
doi: 10.1038/nmicrobiol.2016.1 |
[21] |
Berenreiterová M,, Flegr J,, Kuběna AA, et al. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis[J]. PLoS One, 2011, 6(12): e28925.
doi: 10.1371/journal.pone.0028925 |
[22] |
Van Strien NM,, Cappaert NLM,, Witter MP. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network[J]. Nat Rev Neurosci, 2009, 10(4): 272-282.
doi: 10.1038/nrn2614 pmid: 19300446 |
[23] | Martynowicz J,, Augusto L,, Wek RC, et al. Guanabenz reverses a key behavioral change caused by latent toxoplasmosis in mice by reducing neuroinflammation[J]. mBio, 2019, 10(2): e00381-e00319. |
[24] |
Stibbs HH. Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice[J]. Ann Trop Med Parasitol, 1985, 79(2): 153-157.
doi: 10.1080/00034983.1985.11811902 |
[25] |
Strobl JS,, Goodwin DG,, Rzigalinski BA, et al. Dopamine stimulates propagation of Toxoplasma gondii tachyzoites in human fibroblast and primary neonatal rat astrocyte cell cultures[J]. J Parasitol, 2012, 98(6): 1296-1299.
doi: 10.1645/GE-2760.1 |
[26] | Webster JP,, Lamberton PHL,, Donnelly CA, et al. Parasites as causative agents of human affective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxoplasma gondii's ability to alter host behaviour[J]. Proc Biol Sci, 2006, 273(1589): 1023-1030. |
[27] |
Martin HL,, Alsaady I,, Howell G, et al. Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells[J]. Neuroscience, 2015, 306: 50-62.
doi: 10.1016/j.neuroscience.2015.08.005 pmid: 26297895 |
[28] |
Prandovszky E,, Gaskell E,, Martin H, et al. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism[J]. PLoS One, 2011, 6(9): e23866.
doi: 10.1371/journal.pone.0023866 |
[29] |
Gaskell EA,, Smith JE,, Pinney JW, et al. A unique dual activity amino acid hydroxylase in Toxoplasma gondii[J]. PLoS One, 2009, 4(3): e4801.
doi: 10.1371/journal.pone.0004801 |
[30] |
Afonso C,, Paixão VB,, Klaus A, et al. Toxoplasma-induced changes in host risk behaviour are independent of parasite-derived AaaH2 tyrosine hydroxylase[J]. Sci Rep, 2017, 7(1): 13822.
doi: 10.1038/s41598-017-13229-y pmid: 29062106 |
[31] |
Barbosa JL,, Béla SR,, Ricci MF, et al. Spontaneous T. gondii neuronal encystment induces structural neuritic network impairment associated with changes of tyrosine hydroxilase expression[J]. Neurosci Lett, 2020, 718: 134721.
doi: 10.1016/j.neulet.2019.134721 |
[32] |
McFarland R,, Wang ZT,, Jouroukhin Y, et al. AAH2 gene is not required for dopamine-dependent neurochemical and behavioral abnormalities produced by Toxoplasma infection in mouse[J]. Behav Brain Res, 2018, 347: 193-200.
doi: S0166-4328(18)30137-2 pmid: 29555339 |
[33] |
Wang ZT,, Harmon S,, O’Malley KL, et al. Reassessment of the role of aromatic amino acid hydroxylases and the effect of infection by Toxoplasma gondii on host dopamine[J]. Infect Immun, 2015, 83(3): 1039-1047.
doi: 10.1128/IAI.02465-14 pmid: 25547791 |
[34] |
Carrillo GL,, Ballard VA,, Glausen T, et al. Toxoplasma infection induces microglia-neuron contact and the loss of perisomatic inhibitory synapses[J]. Glia, 2020, 68(10): 1968-1986.
doi: 10.1002/glia.23816 |
[35] |
Notarangelo FM,, Wilson EH,, Horning KJ, et al. Evaluation of kynurenine pathway metabolism in Toxoplasma gondii-infected mice: implications for schizophrenia[J]. Schizophr Res, 2014, 152(1): 261-267.
doi: 10.1016/j.schres.2013.11.011 pmid: 24345671 |
[36] |
David CN,, Frias ES,, Szu JI, et al. GLT-1-dependent disruption of CNS glutamate homeostasis and neuronal function by the protozoan parasite Toxoplasma gondii[J]. PLoS Pathog, 2016, 12(6): e1005643.
doi: 10.1371/journal.ppat.1005643 |
[37] |
Tyebji S,, Hannan AJ,, Tonkin CJ. Pathogenic infection in male mice changes sperm small RNA profiles and transgenerationally alters offspring behavior[J]. Cell Rep, 2020, 31(4): 107573.
doi: 10.1016/j.celrep.2020.107573 |
[38] |
Blomström A,, Karlsson H,, Wicks S, et al. Maternal antibodies to infectious agents and risk for non-affective psychoses in the offspring: a matched case-control study[J]. Schizophr Res, 2012, 140(1/2/3): 25-30.
doi: 10.1016/j.schres.2012.06.035 |
[39] |
Villares M,, Berthelet J,, Weitzman JB. The clever strategies used by intracellular parasites to hijack host gene expression[J]. Semin Immunopathol, 2020, 42(2): 215-226.
doi: 10.1007/s00281-020-00779-z pmid: 32002610 |
[40] |
Hari DS,, Vyas A. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala[J]. Mol Ecol, 2014, 23(24): 6114-6122.
doi: 10.1111/mec.12888 |
[41] |
Dvorakova-Hortova K,, Sidlova A,, Ded L, et al. Toxoplasma gondii decreases the reproductive fitness in mice[J]. PLoS One, 2014, 9(6): e96770.
doi: 10.1371/journal.pone.0096770 |
[42] |
Syn G,, Anderson D,, Blackwell JM, et al. Epigenetic dysregulation of host gene expression in Toxoplasma infection with specific reference to dopamine and amyloid pathways[J]. Infect Genet Evol, 2018, 65: 159-162.
doi: 10.1016/j.meegid.2018.07.034 |
[43] |
Kano SI,, Hodgkinson CA,, Jones-Brando L, et al. Host-parasite interaction associated with major mental illness[J]. Mol Psychiatry, 2020, 25(1): 194-205.
doi: 10.1038/s41380-018-0217-z |
[44] | Bao AY,, Wang HL,, Jiang MS. Toxoplasma gondii and host behavior: delicate relationship[J]. J Pathog Biol, 2007, 2(5): 389-392. (in Chinese) |
( 包安裕,, 王惠玲,, 蒋明森. 弓形虫与宿主行为: 微妙的关系[J]. 中国病原生物学杂志, 2007, 2(5): 389-392.) | |
[45] |
Pardini L,, Dellarupe A,, Bacigalupe D, et al. Isolation and molecular characterization of Toxoplasma gondii in a colony of captive black-capped squirrel monkeys (Saimiri boliviensis)[J]. Parasitol Int, 2015, 64(6): 587-590.
doi: 10.1016/j.parint.2015.08.009 pmid: 26299363 |
[1] | 薛羽珊, 林萍, 程训佳, 冯萌. 慢性弓形虫感染对宿主中枢神经系统的损伤及其作用机制[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 527-531. |
[2] | 姜文静, 孟雅莉, 赵利娜, 王春苗, 张晓磊. 刚地弓形虫棒状体蛋白18和膜表面抗原30复合核酸疫苗对小鼠的免疫保护作用[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(5): 532-538. |
[3] | 赵紫琪, 吕芳丽. 蒿甲醚脂质体体外抑制刚地弓形虫增殖作用的研究[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(4): 446-451. |
[4] | 张驰, 陈嘉婷, 辛紫萱, 杨莉莉, 杨梓瀚, 彭鸿娟. 弓形虫慢性感染小鼠脑转录组分析及与抑郁相关的犬尿氨酸通路的验证[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 270-278. |
[5] | 杜鹃, 李佳, 吴迪, 余琦, 张玮, 白如念, 郭俊林, 刘庆斌, 雷琪莉, 谷传慧, 王萌, 赵浩军. 2022年北京市犬猫刚地弓形虫感染血清流行病学调查[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(3): 389-392. |
[6] | 李佳铭, 王艺璇, 杨宁爱, 马慧慧, 兰敏, 刘春兰, 赵志军. 刚地弓形虫ROP16蛋白对MH-S细胞极化和凋亡的影响及其相关机制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 579-586. |
[7] | 邹伟浩, 吴蔚玲, 廖远鹏, 陈敏, 彭鸿娟. 刚地弓形虫抗缓殖子期抗原1单克隆抗体的制备与应用[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(5): 587-593. |
[8] | 王杰, 温红阳, 陈滢, 安然, 罗庆礼, 沈继龙, 都建. 刚地弓形虫巨噬细胞迁移抑制因子基因敲除虫株的构建与鉴定[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 349-354. |
[9] | 王振勋, 熊思思, 孙夏慧, 王永亮, 潘格, 何深一, 丛华. 刚地弓形虫慢性感染小鼠脑组织中lncRNA102796的差异表达及其作用机制[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 187-193. |
[10] | 蒋峰, 陈润, 都宁宁, 朱梦怡, 钟昊, 陈辉, 奚旭霞, 湛孝东, 李朝品. 芜湖市区宠物犬、猫刚地弓形虫感染情况调查[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(1): 124-126. |
[11] | 鲁飞, 卓洵辉, 陆绍红. 顶复门原虫感染与宿主细胞自噬相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(6): 826-831. |
[12] | 王龙江, 李瑾, 尹昆, 徐超, 刘功振, 黄炳成, 魏庆宽, 孙慧. 刚地弓形虫入侵人包皮成纤维细胞前后转录组差异分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 480-486. |
[13] | 廖文中, 徐李清, 姚礼捷, 陈敏, 彭鸿娟. 弓形虫感染后宿主细胞泛素化蛋白谱变化的特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 487-493. |
[14] | 张丽新, 赵桂华, 徐超, 肖婷, 孙慧, 李瑾, 刘功振, 尹昆. 刚地弓形虫RH株速殖子体外入侵小鼠巨噬细胞系感染模型的构建[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 494-501. |
[15] | 侯永恒, 吕芳丽. 弓形虫感染与宿主细胞自噬的相互作用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(4): 537-542. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||