[1] |
Atif I, Touloun O, Boussaa S. Toxoplasma gondii in humans, animals and in the environment in Morocco: A literature review[J]. Gut Pathog, 2024, 16(1):53.
|
[2] |
Hussain MA, Stitt V, Szabo EA, et al. Toxoplasma gondii in the food supply[J]. Pathogens, 2017, 6(2): 21.
|
[3] |
Sgroi G, Viscardi M, Santoro M, et al. Genotyping of Toxoplasma gondii in wild boar (Sus scrofa) in southern Italy: Epidemiological survey and associated risk for consumers[J]. Zoonoses Public Health, 2020, 67(7): 805-813.
|
[4] |
Deng HF, Swart A,Bonačić Marinović AA, et al. The effect of salting on Toxoplasma gondii viability evaluated and implemented in a quantitative risk assessment of meat-borne human infection[J]. Int J Food Microbiol, 2020, 314: 108380.
|
[5] |
Murillo-Léon M, Bastidas-Quintero AM, Steinfeldt T. Decoding Toxoplasma gondii virulence: The mechanisms of IRG protein inactivation[J]. Trends Parasitol, 2024, 40(9): 805-819.
doi: 10.1016/j.pt.2024.07.009
pmid: 39168720
|
[6] |
Zhao XY, Ewald SE. The molecular biology and immune control of chronic Toxoplasma gondii infection[J]. J Clin Invest, 2020, 130(7): 3370-3380.
|
[7] |
Pittman KJ, Aliota MT, Knoll LJ. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection[J]. BMC Genomics, 2014, 15(1): 806.
|
[8] |
Diniz DG, Guerreiro LCF, et al. Contrasting disease progression, microglia reactivity, tolerance, and resistance to Toxoplasma gondii infection in two mouse strains[J]. Biomedicines, 2024, 12(7): 1420.
|
[9] |
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 landscape: Current state and future perspectives[J]. Int J Mol Sci, 2023, 24(22): 16077.
|
[10] |
王聪, 程维晟, 刘芳, 等. 基于CRISPR/Cas9技术的弓形虫rop16Ⅰ/Ⅲ缺陷虫株的构建及毒力鉴定[J]. 中国人兽共患病学报, 2017, 33(1): 22-26, 31.
doi: 10.3969/j.issn.1002-2694.2017.01.004
|
|
Wang C, Cheng WS, Liu F, et al. CRISPR/Cas9-based construction of rop16Ⅰ/Ⅲ deficient strain of Toxoplasma gondii and its virulence identification[J]. Chin J Zoonoses, 2017, 33(1): 22-26, 31. (in Chinese)
|
[11] |
吴燕, 张欣, 李瑾, 等. 基于CRISPR/Cas9技术的弓形虫病疫苗研究进展[J]. 中国血吸虫病防治杂志, 2024, 36(5): 542-547.
|
|
Wu Y, Zhang X, Li J, et al. Progress of researches on toxoplasmosis vaccines based on the CRISPR/Cas9 technology[J]. Chin J Schisto Control, 2024, 36(5): 542-547. (in Chinese)
|
[12] |
贾永根, 闫爱霞, 黄敏君, 等. 基于CRISPR/Cas9技术对刚地弓形虫假定蛋白TGGT1_310420的研究[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(2): 150-154, 160.
doi: 10.12140/j.issn.1000-7423.2019.02.006
|
|
Jia YG, Yan AX, Huang MJ, et al. CRISPR/Cas9-based localization and functional analysis of Toxoplasma gondii putative protein TGGT1_310420[J]. Chin J Parasitol Parasit Dis, 2019, 37(2): 150-154, 160. (in Chinese)
|
[13] |
Seo HH, Han HW, Lee SE, et al. Modelling Toxoplasma gondii infection in human cerebral organoids[J]. Emerg Microbes Infect, 2020, 9(1): 1943-1954.
|
[14] |
Wu MM, Cudjoe O, Shen JL, et al. The host autophagy during Toxoplasma infection[J]. Front Microbiol, 2020, 11: 589604.
|
[15] |
Licon MH, Giuliano CJ, Chan AW, et al. A positive feedback loop controls Toxoplasma chronic differentiation[J]. Nat Microbiol, 2023, 8(5): 889-904.
|
[16] |
Wang FR, Holmes MJ, Hong HJ, et al. Translation initiation factor eIF1.2 promotes Toxoplasma stage conversion by regulating levels of key differentiation factors[J]. Nat Commun, 2024, 15(1): 4385.
|
[17] |
Waldman BS, Schwarz D, WadsworthMH 2nd, et al. Identification of a master regulator of differentiation in Toxoplasma[J]. Cell, 2020, 180(2): 359-372. e16.
|
[18] |
Walrad P, Paterou A, Acosta-Serrano A, et al. Differential trypanosome surface coat regulation by a CCCH protein that co-associates with procyclin mRNA cis-elements[J]. PLoS Pathog, 2009, 5(2): e1000317.
|
[19] |
Wang JL, Li TT, Elsheikha HM, et al. The protein phosphatase 2A holoenzyme is a key regulator of starch metabolism and bradyzoite differentiation in Toxoplasma gondii[J]. Nat Commun, 2022, 13(1): 7560.
|
[20] |
Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing[J]. Life Sci, 2019, 232: 116636.
|