[1] | Doyle LM,, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): E727. | [2] | Yáñez-Mó M,, Siljander PR,, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions[J]. J Extracell Vesicles, 2015, 4(1): 27066. | [3] | Kalluri R,, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. | [4] | Wu ZY,, Wang LL,, Li JY, et al. Extracellular vesicle-mediated communication within host-parasite interactions[J]. Front Immunol, 2018, 9: 3066. | [5] | Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy[J]. Annu Rev Physiol, 2015, 77: 13-27. | [6] | Tkach M,, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232. | [7] | Colombo M,, Raposo G,, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30: 255-289. | [8] | Cheng WJ,, Jiang H,, Dong HF, et al. Advances in researches of exosomes and other extracellular vesicles in parasites and parasitic diseases[J]. Chin J Schisto Control, 2019, 31(5): 555-559. (in Chinese) | [8] | ( 程文君,, 蒋洪,, 董惠芬, 等. 外泌体及其他细胞外囊泡在寄生虫与寄生虫病研究中的进展[J]. 中国血吸虫病防治杂志, 2019, 31(5): 555-559.) | [9] | Sotillo J,, Robinson MW,, Kimber MJ, et al. The protein and microRNA cargo of extracellular vesicles from parasitic helminths: current status and research priorities[J]. Int J Parasitol, 2020, 50(9): 635-645. | [10] | Nawaz M,, Malik MI,, Hameed M, et al. Research progress on the composition and function of parasite-derived exosomes[J]. Acta Trop, 2019, 196: 30-36. | [11] | Raposo G,, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383. | [12] | Zaborowski MP,, Balaj L,, Breakefield XO, et al. Extracellular vesicles: composition, biological relevance, and methods of study[J]. Bioscience, 2015, 65(8): 783-797. | [13] | Valadi H,, Ekström K,, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659. | [14] | Ofir-Birin Y,, Regev-Rudzki N. Extracellular vesicles in parasite survival[J]. Science, 2019, 363(6429): 817-818. | [15] | Huang L,, Ye CL,, Sheng Y, et al. Advances in research on parasite exosomal miRNA[J]. J Pathog Biol, 2019, 14(9): 1115-1118. (in Chinese) | [15] | ( 黄琳,, 叶昌林,, 生燕, 等. 外泌体miRNA在寄生虫中的进展[J]. 中国病原生物学杂志, 2019, 14(9): 1115-1118.) | [16] | Mehmood K,, Zhang H,, Sabir AJ, et al. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants[J]. Microb Pathog, 2017, 109: 253-262. | [17] | Davis CN,, Winters A,, Milic I, et al. Evidence of sequestration of triclabendazole and associated metabolites by extracellular vesicles of Fasciola hepatica[J]. Sci Rep, 2020, 10(1): 13445. | [18] | Marcilla A,, Trelis M,, Cortés A, et al. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells[J]. PLoS One, 2012, 7(9): e45974. | [19] | Cwiklinski K,, de la Torre-Escudero E,, Trelis M, et al. The extracellular vesicles of the helminth pathogen, Fasciola hepatica: biogenesis pathways and cargo molecules involved in parasite pathogenesis[J]. Mol Cell Proteomics, 2015, 14(12): 3258-3273. | [20] | Fromm B,, Ovchinnikov V,, Høye E, et al. On the presence and immunoregulatory functions of extracellular microRNAs in the trematode Fasciola hepatica[J]. Parasite Immunol, 2017, 39(2): e12399. | [21] | Roig J,, Saiz ML,, Galiano A, et al. Extracellular vesicles from the helminth Fasciola hepatica prevent DSS-induced acute ulcerative colitis in a T-lymphocyte independent mode[J]. Front Microbiol, 2018, 9: 1036. | [22] | Brindley PJ,, da Costa JM,, Sripa B. Why does infection with some helminths cause cancer?[J]. Trends Cancer, 2015, 1(3): 174-182. | [23] | Suwannatrai A,, Saichua P,, Haswell M. Epidemiology of Opisthorchis viverrini infection[J]. Adv Parasitol, 2018, 101: 41-67. | [24] | Chaiyadet S,, Sotillo J,, Smout M, et al. Carcinogenic liver fluke secretes extracellular vesicles that promote cholangiocytes to adopt a tumorigenic phenotype[J]. J Infect Dis, 2015, 212(10): 1636-1645. | [25] | Suttiprapa S,, Sotillo J,, Smout M, et al. Opisthorchis viverrini proteome and host-parasite interactions[J]. Adv Parasitol, 2018, 102: 45-72. | [26] | Arunsan P,, Chaidee A,, Cochran CJ, et al. Liver fluke granulin promotes extracellular vesicle-mediated crosstalk and cellular microenvironment conducive to cholangiocarcinoma[J]. Neoplasia, 2020, 22(5): 203-216. | [27] | Sun CS,, Hu W,, Wang TP. Advances in research on schistosome-host interactions mediated by extracellular vesicles[J]. Chin J Parasitol Parasit Dis, 2020, 38(3): 378-382. (in Chinese) | [27] | ( 孙成松,, 胡薇,, 汪天平. 胞外囊泡介导血吸虫与宿主相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(3): 378-382.) | [28] | Wang LF,, Li ZT,, Shen J, et al. Exosome-like vesicles derived by Schistosoma japonicum adult worms mediates M1 type immune-activity of macrophage[J]. Parasitol Res, 2015, 114(5): 1865-1873. | [29] | Sotillo J,, Pearson M,, Potriquet J, et al. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates[J]. Int J Parasitol, 2016, 46(1): 1-5. | [30] | Samoil V,, Dagenais M,, Ganapathy V, et al. Vesicle-based secretion in schistosomes: analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni[J]. Sci Rep, 2018, 8(1): 3286. | [31] | Kifle DW,, Pearson MS,, Becker L, et al. Proteomic analysis of two populations of Schistosoma mansoni-derived extracellular vesicles: 15k pellet and 120k pellet vesicles[J]. Mol Biochem Parasitol, 2020, 236: 111264. | [32] | Lin Y,, Zhu SL,, Hu C, et al. Cross-species suppression of hepatoma cell growth and migration by a Schistosoma japonicum microRNA[J]. Mol Ther Nucleic Acids, 2019, 18: 400-412. | [33] | Giri BR,, Cheng GF. Host miR-148 regulates a macrophage-mediated immune response during Schistosoma japonicum infection[J]. Int J Parasitol, 2019, 49(13/14): 993-997. | [34] | Liu JT,, Zhu LH,, Wang JB, et al. Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism[J]. PLoS Pathog, 2019, 15(6): e1007817. | [35] | Wang LF,, Liao Y,, Yang RB, et al. Sja-miR-71a in schistosome egg-derived extracellular vesicles suppresses liver fibrosis caused by schistosomiasis via targeting semaphorin 4D[J]. J Extracell Vesicles, 2020, 9(1): 1785738. | [36] | Coakley G,, Wright MD,, Borger JG. Schistosoma mansoni-derived lipids in extracellular vesicles: potential agonists for eosinophillic tissue repair[J]. Front Immunol, 2019, 10: 1010. | [37] | Avni D,, Avni O. Extracellular vesicles: schistosomal long-range precise weapon to manipulate the immune response[J]. Front Cell Infect Microbiol, 2021, 11: 649480. | [38] | Wang W,, Zhou XJ,, Cui F, et al. Proteomic analysis on exosomes derived from patients’ sera infected with Echinococcus granulosus[J]. Korean J Parasitol, 2019, 57(5): 489-497. | [39] | Nicolao MC,, Rodriguez Rodrigues C,, Cumino AC. Extracellular vesicles from Echinococcus granulosus larval stage: isolation, characterization and uptake by dendritic cells[J]. PLoS Negl Trop Dis, 2019, 13(1): e0007032. | [40] | Li ZJ,, Liang JP. Study on the influence of protoscoleces exosome on the activation and cytokine secretion of dendritic cells[J]. Chin J Prev Vet Med, 2020, 42(1): 70-74. (in Chinese) | [40] | ( 李宗吉,, 梁锦屏. 原头蚴外泌体对树突状细胞活化和细胞因子分泌的影响[J]. 中国预防兽医学报, 2020, 42(1): 70-74.) | [41] | Yang J,, Wu JE,, Fu Y, et al. Identification of different extracellular vesicles in the hydatid fluid of Echinococcus granulosus and immunomodulatory effects of 110 K EVs on sheep PBMCs[J]. Front Immunol, 2021, 12: 602717. | [42] | Zhang XF,, Gong WC,, Cao SK, et al. Comprehensive analysis of non-coding RNA profiles of exosome-like vesicles from the protoscoleces and hydatid cyst fluid of Echinococcus granulosus[J]. Front Cell Infect Microbiol, 2020, 10: 316. | [43] | Zheng YD,, Guo XL,, Su M, et al. Regulatory effects of Echinococcus multilocularis extracellular vesicles on RAW264.7 macrophages[J]. Vet Parasitol, 2017, 235: 29-36. | [44] | Ding JT,, He GT,, Wu JE, et al. miRNA-seq of Echinococcus multilocularis extracellular vesicles and immunomodulatory effects of miR-4989[J]. Front Microbiol, 2019, 10: 2707. | [45] | Buck AH,, Coakley G,, Simbari F, et al. Erratum: exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity[J]. Nat Commun, 2015, 6: 8772. | [46] | Coakley G,, McCaskill JL,, Borger JG, et al. Extracellular vesicles from a helminth parasite suppress macrophage activation and constitute an effective vaccine for protective immunity[J]. Cell Rep, 2017, 19(8): 1545-1557. | [47] | Kosanović M,, Cvetković J,, Gruden-Movsesijan A, et al. Trichinella spiralis muscle larvae release extracellular vesicles with immunomodulatory properties[J]. Parasite Immunol, 2019, 41(10): e12665. | [48] | Yang Y,, Liu L,, Liu XL, et al. Extracellular vesicles derived from Trichinella spiralis muscle larvae ameliorate TNBS-induced colitis in mice[J]. Front Immunol, 2020, 11: 1174. | [49] | Gao X,, Yang Y,, Liu XL, et al. Extracellular vesicles derived from Trichinella spiralis prevent colitis by inhibiting M1 macrophage polarization[J]. Acta Trop, 2021, 213: 105761. | [50] | Cao CL,, Guo JG. Challenge and strategy of prevention and control of important parasitic diseases under the Belt and Road Initiative[J]. Chin J Schisto Control, 2018, 30(2): 111-116. (in Chinese) | [50] | ( 曹淳力,, 郭家钢. “一带一路”建设中重要寄生虫病防控面临的挑战与对策[J]. 中国血吸虫病防治杂志, 2018, 30(2): 111-116.) | [51] | Zamanian M,, Fraser LM,, Agbedanu PN, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi[J]. PLoS Negl Trop Dis, 2015, 9(9): e0004069. | [52] | Banerjee S,, Xie N,, Cui HC, et al. microRNA let-7c regulates macrophage polarization[J]. J Immunol, 2013, 190(12): 6542-6549. | [53] | Ricciardi A,, Bennuru S,, Tariq S, et al. Extracellular vesicles released from the filarial parasite Brugia malayi downregulate the host mTOR pathway[J]. PLoS Negl Trop Dis, 2021, 15(1): e0008884. |
|