中国寄生虫学与寄生虫病杂志 ›› 2022, Vol. 40 ›› Issue (3): 390-395.doi: 10.12140/j.issn.1000-7423.2022.03.017
收稿日期:
2021-09-26
修回日期:
2021-11-15
出版日期:
2022-06-30
发布日期:
2022-07-06
通讯作者:
李学荣
作者简介:
潘筱雯(1998-),女,硕士研究生,从事病原生物感染与免疫的研究。E-mail: panxw7@mail2.sysu.edu.cn
基金资助:
PAN Xiao-wen(), WU Yin-juan, HE Qing, YIN Ying-xuan, LI Xue-rong(
)
Received:
2021-09-26
Revised:
2021-11-15
Online:
2022-06-30
Published:
2022-07-06
Contact:
LI Xue-rong
Supported by:
摘要:
外泌体是一类由多种活细胞分泌的双层囊泡状小体,含有多种重要生物活性物质,如蛋白质、脂质和核酸等,参与介导细胞间的信息交流、免疫调节等重要生理过程。寄生虫来源的外泌体在寄生虫-宿主的相互作用中发挥重要作用,可通过各种机制调节宿主的免疫应答,实现对宿主细胞功能的调控,是寄生虫与寄生虫、寄生虫与宿主相互作用的重要媒介。本文就近年来外泌体在吸虫、绦虫和线虫等寄生蠕虫中感染致病、免疫调控和免疫逃避等方面的研究作一综述,为研究寄生蠕虫外泌体及其功能提供参考。
中图分类号:
潘筱雯, 吴银娟, 何晴, 殷颖璇, 李学荣. 寄生蠕虫外泌体及其功能的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(3): 390-395.
PAN Xiao-wen, WU Yin-juan, HE Qing, YIN Ying-xuan, LI Xue-rong. Research advances on exosome and its functions to parasitic helminths[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(3): 390-395.
[1] | Doyle LM,, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): E727. |
[2] |
Yáñez-Mó M,, Siljander PR,, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions[J]. J Extracell Vesicles, 2015, 4(1): 27066.
doi: 10.3402/jev.v4.27066 |
[3] | Kalluri R,, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. |
[4] |
Wu ZY,, Wang LL,, Li JY, et al. Extracellular vesicle-mediated communication within host-parasite interactions[J]. Front Immunol, 2018, 9: 3066.
doi: 10.3389/fimmu.2018.03066 |
[5] |
Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy[J]. Annu Rev Physiol, 2015, 77: 13-27.
doi: 10.1146/annurev-physiol-021014-071641 pmid: 25293529 |
[6] |
Tkach M,, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232.
doi: 10.1016/j.cell.2016.01.043 |
[7] |
Colombo M,, Raposo G,, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30: 255-289.
doi: 10.1146/annurev-cellbio-101512-122326 pmid: 25288114 |
[8] | Cheng WJ,, Jiang H,, Dong HF, et al. Advances in researches of exosomes and other extracellular vesicles in parasites and parasitic diseases[J]. Chin J Schisto Control, 2019, 31(5): 555-559. (in Chinese) |
( 程文君,, 蒋洪,, 董惠芬, 等. 外泌体及其他细胞外囊泡在寄生虫与寄生虫病研究中的进展[J]. 中国血吸虫病防治杂志, 2019, 31(5): 555-559.) | |
[9] |
Sotillo J,, Robinson MW,, Kimber MJ, et al. The protein and microRNA cargo of extracellular vesicles from parasitic helminths: current status and research priorities[J]. Int J Parasitol, 2020, 50(9): 635-645.
doi: S0020-7519(20)30161-2 pmid: 32652128 |
[10] |
Nawaz M,, Malik MI,, Hameed M, et al. Research progress on the composition and function of parasite-derived exosomes[J]. Acta Trop, 2019, 196: 30-36.
doi: 10.1016/j.actatropica.2019.05.004 |
[11] |
Raposo G,, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383.
doi: 10.1083/jcb.201211138 pmid: 23420871 |
[12] |
Zaborowski MP,, Balaj L,, Breakefield XO, et al. Extracellular vesicles: composition, biological relevance, and methods of study[J]. Bioscience, 2015, 65(8): 783-797.
pmid: 26955082 |
[13] |
Valadi H,, Ekström K,, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.
doi: 10.1038/ncb1596 pmid: 17486113 |
[14] |
Ofir-Birin Y,, Regev-Rudzki N. Extracellular vesicles in parasite survival[J]. Science, 2019, 363(6429): 817-818.
doi: 10.1126/science.aau4666 pmid: 30792291 |
[15] | Huang L,, Ye CL,, Sheng Y, et al. Advances in research on parasite exosomal miRNA[J]. J Pathog Biol, 2019, 14(9): 1115-1118. (in Chinese) |
( 黄琳,, 叶昌林,, 生燕, 等. 外泌体miRNA在寄生虫中的进展[J]. 中国病原生物学杂志, 2019, 14(9): 1115-1118.) | |
[16] |
Mehmood K,, Zhang H,, Sabir AJ, et al. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants[J]. Microb Pathog, 2017, 109: 253-262.
doi: 10.1016/j.micpath.2017.06.006 |
[17] |
Davis CN,, Winters A,, Milic I, et al. Evidence of sequestration of triclabendazole and associated metabolites by extracellular vesicles of Fasciola hepatica[J]. Sci Rep, 2020, 10(1): 13445.
doi: 10.1038/s41598-020-69970-4 |
[18] |
Marcilla A,, Trelis M,, Cortés A, et al. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells[J]. PLoS One, 2012, 7(9): e45974.
doi: 10.1371/journal.pone.0045974 |
[19] |
Cwiklinski K,, de la Torre-Escudero E,, Trelis M, et al. The extracellular vesicles of the helminth pathogen, Fasciola hepatica: biogenesis pathways and cargo molecules involved in parasite pathogenesis[J]. Mol Cell Proteomics, 2015, 14(12): 3258-3273.
doi: 10.1074/mcp.M115.053934 pmid: 26486420 |
[20] |
Fromm B,, Ovchinnikov V,, Høye E, et al. On the presence and immunoregulatory functions of extracellular microRNAs in the trematode Fasciola hepatica[J]. Parasite Immunol, 2017, 39(2): e12399.
doi: 10.1111/pim.12399 |
[21] | Roig J,, Saiz ML,, Galiano A, et al. Extracellular vesicles from the helminth Fasciola hepatica prevent DSS-induced acute ulcerative colitis in a T-lymphocyte independent mode[J]. Front Microbiol, 2018, 9: 1036. |
[22] |
Brindley PJ,, da Costa JM,, Sripa B. Why does infection with some helminths cause cancer?[J]. Trends Cancer, 2015, 1(3): 174-182.
pmid: 26618199 |
[23] | Suwannatrai A,, Saichua P,, Haswell M. Epidemiology of Opisthorchis viverrini infection[J]. Adv Parasitol, 2018, 101: 41-67. |
[24] |
Chaiyadet S,, Sotillo J,, Smout M, et al. Carcinogenic liver fluke secretes extracellular vesicles that promote cholangiocytes to adopt a tumorigenic phenotype[J]. J Infect Dis, 2015, 212(10): 1636-1645.
doi: 10.1093/infdis/jiv291 pmid: 25985904 |
[25] | Suttiprapa S,, Sotillo J,, Smout M, et al. Opisthorchis viverrini proteome and host-parasite interactions[J]. Adv Parasitol, 2018, 102: 45-72. |
[26] |
Arunsan P,, Chaidee A,, Cochran CJ, et al. Liver fluke granulin promotes extracellular vesicle-mediated crosstalk and cellular microenvironment conducive to cholangiocarcinoma[J]. Neoplasia, 2020, 22(5): 203-216.
doi: 10.1016/j.neo.2020.02.004 |
[27] | Sun CS,, Hu W,, Wang TP. Advances in research on schistosome-host interactions mediated by extracellular vesicles[J]. Chin J Parasitol Parasit Dis, 2020, 38(3): 378-382. (in Chinese) |
( 孙成松,, 胡薇,, 汪天平. 胞外囊泡介导血吸虫与宿主相互作用的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(3): 378-382.) | |
[28] |
Wang LF,, Li ZT,, Shen J, et al. Exosome-like vesicles derived by Schistosoma japonicum adult worms mediates M1 type immune-activity of macrophage[J]. Parasitol Res, 2015, 114(5): 1865-1873.
doi: 10.1007/s00436-015-4373-7 |
[29] |
Sotillo J,, Pearson M,, Potriquet J, et al. Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates[J]. Int J Parasitol, 2016, 46(1): 1-5.
doi: 10.1016/j.ijpara.2015.09.002 pmid: 26460238 |
[30] |
Samoil V,, Dagenais M,, Ganapathy V, et al. Vesicle-based secretion in schistosomes: analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni[J]. Sci Rep, 2018, 8(1): 3286.
doi: 10.1038/s41598-018-21587-4 |
[31] | Kifle DW,, Pearson MS,, Becker L, et al. Proteomic analysis of two populations of Schistosoma mansoni-derived extracellular vesicles: 15k pellet and 120k pellet vesicles[J]. Mol Biochem Parasitol, 2020, 236: 111264. |
[32] |
Lin Y,, Zhu SL,, Hu C, et al. Cross-species suppression of hepatoma cell growth and migration by a Schistosoma japonicum microRNA[J]. Mol Ther Nucleic Acids, 2019, 18: 400-412.
doi: 10.1016/j.omtn.2019.09.006 |
[33] |
Giri BR,, Cheng GF. Host miR-148 regulates a macrophage-mediated immune response during Schistosoma japonicum infection[J]. Int J Parasitol, 2019, 49(13/14): 993-997.
doi: 10.1016/j.ijpara.2019.08.002 |
[34] | Liu JT,, Zhu LH,, Wang JB, et al. Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism[J]. PLoS Pathog, 2019, 15(6): e1007817. |
[35] |
Wang LF,, Liao Y,, Yang RB, et al. Sja-miR-71a in schistosome egg-derived extracellular vesicles suppresses liver fibrosis caused by schistosomiasis via targeting semaphorin 4D[J]. J Extracell Vesicles, 2020, 9(1): 1785738.
doi: 10.1080/20013078.2020.1785738 |
[36] |
Coakley G,, Wright MD,, Borger JG. Schistosoma mansoni-derived lipids in extracellular vesicles: potential agonists for eosinophillic tissue repair[J]. Front Immunol, 2019, 10: 1010.
doi: 10.3389/fimmu.2019.01010 |
[37] |
Avni D,, Avni O. Extracellular vesicles: schistosomal long-range precise weapon to manipulate the immune response[J]. Front Cell Infect Microbiol, 2021, 11: 649480.
doi: 10.3389/fcimb.2021.649480 |
[38] |
Wang W,, Zhou XJ,, Cui F, et al. Proteomic analysis on exosomes derived from patients’ sera infected with Echinococcus granulosus[J]. Korean J Parasitol, 2019, 57(5): 489-497.
doi: 10.3347/kjp.2019.57.5.489 pmid: 31715689 |
[39] | Nicolao MC,, Rodriguez Rodrigues C,, Cumino AC. Extracellular vesicles from Echinococcus granulosus larval stage: isolation, characterization and uptake by dendritic cells[J]. PLoS Negl Trop Dis, 2019, 13(1): e0007032. |
[40] | Li ZJ,, Liang JP. Study on the influence of protoscoleces exosome on the activation and cytokine secretion of dendritic cells[J]. Chin J Prev Vet Med, 2020, 42(1): 70-74. (in Chinese) |
( 李宗吉,, 梁锦屏. 原头蚴外泌体对树突状细胞活化和细胞因子分泌的影响[J]. 中国预防兽医学报, 2020, 42(1): 70-74.) | |
[41] |
Yang J,, Wu JE,, Fu Y, et al. Identification of different extracellular vesicles in the hydatid fluid of Echinococcus granulosus and immunomodulatory effects of 110 K EVs on sheep PBMCs[J]. Front Immunol, 2021, 12: 602717.
doi: 10.3389/fimmu.2021.602717 |
[42] |
Zhang XF,, Gong WC,, Cao SK, et al. Comprehensive analysis of non-coding RNA profiles of exosome-like vesicles from the protoscoleces and hydatid cyst fluid of Echinococcus granulosus[J]. Front Cell Infect Microbiol, 2020, 10: 316.
doi: 10.3389/fcimb.2020.00316 |
[43] |
Zheng YD,, Guo XL,, Su M, et al. Regulatory effects of Echinococcus multilocularis extracellular vesicles on RAW264.7 macrophages[J]. Vet Parasitol, 2017, 235: 29-36.
doi: 10.1016/j.vetpar.2017.01.012 |
[44] |
Ding JT,, He GT,, Wu JE, et al. miRNA-seq of Echinococcus multilocularis extracellular vesicles and immunomodulatory effects of miR-4989[J]. Front Microbiol, 2019, 10: 2707.
doi: 10.3389/fmicb.2019.02707 |
[45] |
Buck AH,, Coakley G,, Simbari F, et al. Erratum: exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity[J]. Nat Commun, 2015, 6: 8772.
doi: 10.1038/ncomms9772 pmid: 26490107 |
[46] |
Coakley G,, McCaskill JL,, Borger JG, et al. Extracellular vesicles from a helminth parasite suppress macrophage activation and constitute an effective vaccine for protective immunity[J]. Cell Rep, 2017, 19(8): 1545-1557.
doi: 10.1016/j.celrep.2017.05.001 |
[47] | Kosanović M,, Cvetković J,, Gruden-Movsesijan A, et al. Trichinella spiralis muscle larvae release extracellular vesicles with immunomodulatory properties[J]. Parasite Immunol, 2019, 41(10): e12665. |
[48] |
Yang Y,, Liu L,, Liu XL, et al. Extracellular vesicles derived from Trichinella spiralis muscle larvae ameliorate TNBS-induced colitis in mice[J]. Front Immunol, 2020, 11: 1174.
doi: 10.3389/fimmu.2020.01174 |
[49] | Gao X,, Yang Y,, Liu XL, et al. Extracellular vesicles derived from Trichinella spiralis prevent colitis by inhibiting M1 macrophage polarization[J]. Acta Trop, 2021, 213: 105761. |
[50] | Cao CL,, Guo JG. Challenge and strategy of prevention and control of important parasitic diseases under the Belt and Road Initiative[J]. Chin J Schisto Control, 2018, 30(2): 111-116. (in Chinese) |
( 曹淳力,, 郭家钢. “一带一路”建设中重要寄生虫病防控面临的挑战与对策[J]. 中国血吸虫病防治杂志, 2018, 30(2): 111-116.) | |
[51] | Zamanian M,, Fraser LM,, Agbedanu PN, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi[J]. PLoS Negl Trop Dis, 2015, 9(9): e0004069. |
[52] |
Banerjee S,, Xie N,, Cui HC, et al. microRNA let-7c regulates macrophage polarization[J]. J Immunol, 2013, 190(12): 6542-6549.
doi: 10.4049/jimmunol.1202496 pmid: 23667114 |
[53] | Ricciardi A,, Bennuru S,, Tariq S, et al. Extracellular vesicles released from the filarial parasite Brugia malayi downregulate the host mTOR pathway[J]. PLoS Negl Trop Dis, 2021, 15(1): e0008884. |
[1] | 李文杰, 冯萌, 程训佳. 蠕虫及其来源分子对螨性哮喘免疫调控的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 131-136. |
[2] | 黎嫦, 杜新月, 严敏, 王兆军. 中性粒细胞胞外诱捕网在寄生虫感染中的作用和机制研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 219-222. |
[3] | 马慧, 种世桂, 陈根, 张伶慧, 秦俊梅, 赵玉敏. 多房棘球蚴病相关细胞信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(2): 223-227. |
[4] | 栗根, 孙同骏, 钱亚云, 李倩倩, 杨小迪. 血吸虫及其衍生物调节免疫失调性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2023, 41(1): 85-91. |
[5] | 陈果, 朱丹丹, 段义农. 免疫调节蛋白B7家族在日本血吸虫感染免疫调节中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(6): 774-779. |
[6] | 孙叶挺, 江楠, 姜岩岩, 李腾, 蒋小凤, 曹建平, 沈玉娟. 细粒棘球蚴原头节源外泌体体外刺激髓源抑制性细胞极化的研究[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 175-180. |
[7] | 何威, 周必英. 感染蠕虫后宿主T细胞免疫应答相关信号通路的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(2): 223-227. |
[8] | 胡玥, 吕志跃. 代谢组学在医学蠕虫研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(5): 703-709. |
[9] | 陈玉莹, 王晓婷, 戴洋, 曹俊. 蠕虫及其来源分子干预炎症性疾病的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(3): 380-385. |
[10] | 刘冰, 王奇, 贺拥军, 贺平. 医学原虫相关蛋白的免疫调节作用研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2021, 39(1): 112-119. |
[11] | 李朋举, 左素琼, 段玉娟, 李浩然, 张振超, 李祥瑞, 王帅. 弓形虫外泌体研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(5): 653-657. |
[12] | 颜鲁军, 李雅婷, 丁军军, 杨静, 郑亚东, 陈轶霞. 细粒棘球蚴原头节miR-71的分泌表达特征分析[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(2): 188-193. |
[13] | 武艺, 李路, 徐永伟, 邢瑞欣, 胡静, 王书书, 沈继龙, 徐元宏, 陈熙. 日本血吸虫成虫可溶性蛋白和重组半胱氨酸蛋白酶抑制蛋白抑制小鼠结肠炎的研究[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(2): 127-136. |
[14] | 张小凡, 巩文词, 沈玉娟. 胞外囊泡在寄生蠕虫中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(6): 648-654. |
[15] | 臧新中, 李焕璋, 钱门宝, 朱慧慧, 周长海, 陈颖丹, 秦志强, 李石柱. 重点蠕虫病伤残权重研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36(5): 510-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||